[Difféomorphismes partiellement hyperboliques de la nil-variété de Heisenberg et applications d'holonomie]
Dans cette note, nous démontrons que les automorphismes partiellement hyperboliques de la nil-variété non abélienne de dimension 3 peuvent tous être approchés dans la topologie par des difféomorphismes structurellement stables, chacun possédant un attracteur et un répulseur comme seuls ensembles récurrents par chaîne. Cela implique que ces automorphismes partiellement hyperboliques ne sont pas robustement transitifs. Comme corollaire, nous en déduisons que les holonomies des feuilletages stables et instables des difféomorphismes approximants sont des homéomorphismes quasi périodiquement forcés twistés du cercle, qui sont transitifs mais pas minimaux, qui satisfont à certaines propriétés de régularité dans les fibres.
In this note we show that all partially hyperbolic automorphisms on a 3-dimensional non-Abelian nilmanifold can be -approximated by structurally stable -diffeomorphisms, whose chain recurrent set consists of one attractor and one repeller. In particular, all these partially hyperbolic automorphisms are not robustly transitive. As a corollary, the holonomy maps of the stable and unstable foliations of the approximating diffeomorphisms are twisted quasiperiodically forced circle homeomorphisms, which are transitive but non-minimal and satisfy certain fiberwise regularity properties.
Accepté le :
Publié le :
Yi Shi 1, 2
@article{CRMATH_2014__352_9_743_0, author = {Yi Shi}, title = {Partially hyperbolic diffeomorphisms on {Heisenberg} nilmanifolds and holonomy maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {743--747}, publisher = {Elsevier}, volume = {352}, number = {9}, year = {2014}, doi = {10.1016/j.crma.2014.07.002}, language = {en}, }
Yi Shi. Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and holonomy maps. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 743-747. doi : 10.1016/j.crma.2014.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.002/
[1] Denjoy constructions for fibered homeomorphisms of the torus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 11, pp. 5851-5883
[2] Axiom A diffeomorphisms derived from Anosov flows, J. Mod. Dyn., Volume 4 (2010) no. 1, pp. 1-63
[3] Transitive Anosov flows and pseudo-Anosov maps, Topology, Volume 22 (1983) no. 3, pp. 299-303
[4] Partial hyperbolicity on 3-dimensional nilmanifolds, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 8, pp. 3641-3669
[5] Pointwise partial hyperbolicity in 3-dimensional nilmanifolds, 2013 (Preprints) | arXiv
[6] A survey of partially hyperbolic dynamics, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., vol. 51, AMS, 2007, pp. 35-87
[7] Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., Volume 2 (2008) no. 2, pp. 187-208
[8] Perturbations of partially hyperbolic automorphisms on Heisenberg nilmanifold, Peking University & Université de Bourgogne, China/France, 2014 (Ph.D. thesis)
[9] Conservative partially hyperbolic dynamics, New Delhi, Volume vol. III (2010), pp. 1816-1836
Cité par Sources :
Commentaires - Politique