Comptes Rendus
Dynamical systems
Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and holonomy maps
Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 743-747.

In this note we show that all partially hyperbolic automorphisms on a 3-dimensional non-Abelian nilmanifold can be C1-approximated by structurally stable C-diffeomorphisms, whose chain recurrent set consists of one attractor and one repeller. In particular, all these partially hyperbolic automorphisms are not robustly transitive. As a corollary, the holonomy maps of the stable and unstable foliations of the approximating diffeomorphisms are twisted quasiperiodically forced circle homeomorphisms, which are transitive but non-minimal and satisfy certain fiberwise regularity properties.

Dans cette note, nous démontrons que les automorphismes partiellement hyperboliques de la nil-variété non abélienne de dimension 3 peuvent tous être approchés dans la topologie C1 par des difféomorphismes structurellement stables, chacun possédant un attracteur et un répulseur comme seuls ensembles récurrents par chaîne. Cela implique que ces automorphismes partiellement hyperboliques ne sont pas robustement transitifs. Comme corollaire, nous en déduisons que les holonomies des feuilletages stables et instables des difféomorphismes approximants sont des homéomorphismes quasi périodiquement forcés twistés du cercle, qui sont transitifs mais pas minimaux, qui satisfont à certaines propriétés de régularité dans les fibres.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.07.002

Yi Shi 1, 2

1 School of Mathematical Sciences, Peking University, Beijing 100871, China
2 Institut de mathématiques de Bourgogne, Université de Bourgogne, 21000 Dijon, France
@article{CRMATH_2014__352_9_743_0,
     author = {Yi Shi},
     title = {Partially hyperbolic diffeomorphisms on {Heisenberg} nilmanifolds and holonomy maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {743--747},
     publisher = {Elsevier},
     volume = {352},
     number = {9},
     year = {2014},
     doi = {10.1016/j.crma.2014.07.002},
     language = {en},
}
TY  - JOUR
AU  - Yi Shi
TI  - Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and holonomy maps
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 743
EP  - 747
VL  - 352
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2014.07.002
LA  - en
ID  - CRMATH_2014__352_9_743_0
ER  - 
%0 Journal Article
%A Yi Shi
%T Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and holonomy maps
%J Comptes Rendus. Mathématique
%D 2014
%P 743-747
%V 352
%N 9
%I Elsevier
%R 10.1016/j.crma.2014.07.002
%G en
%F CRMATH_2014__352_9_743_0
Yi Shi. Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and holonomy maps. Comptes Rendus. Mathématique, Volume 352 (2014) no. 9, pp. 743-747. doi : 10.1016/j.crma.2014.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.07.002/

[1] F. Béguin; S. Crovisier; T. Jäger; F. Le Roux Denjoy constructions for fibered homeomorphisms of the torus, Trans. Amer. Math. Soc., Volume 361 (2009) no. 11, pp. 5851-5883

[2] Ch. Bonatti; N. Guelman Axiom A diffeomorphisms derived from Anosov flows, J. Mod. Dyn., Volume 4 (2010) no. 1, pp. 1-63

[3] D. Fried Transitive Anosov flows and pseudo-Anosov maps, Topology, Volume 22 (1983) no. 3, pp. 299-303

[4] A. Hammerlindl Partial hyperbolicity on 3-dimensional nilmanifolds, Discrete Contin. Dyn. Syst., Volume 33 (2013) no. 8, pp. 3641-3669

[5] A. Hammerlindl; R. Potrie Pointwise partial hyperbolicity in 3-dimensional nilmanifolds, 2013 (Preprints) | arXiv

[6] F. Rodriguez Hertz; J. Rodriguez Hertz; R. Ures A survey of partially hyperbolic dynamics, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., vol. 51, AMS, 2007, pp. 35-87

[7] F. Rodriguez Hertz; J. Rodriguez Hertz; R. Ures Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn., Volume 2 (2008) no. 2, pp. 187-208

[8] Y. Shi Perturbations of partially hyperbolic automorphisms on Heisenberg nilmanifold, Peking University & Université de Bourgogne, China/France, 2014 (Ph.D. thesis)

[9] A. Wilkinson Conservative partially hyperbolic dynamics, New Delhi, Volume vol. III (2010), pp. 1816-1836

Cited by Sources:

Comments - Policy