[Critères portant sur des symboles et noyaux pour les classes de Schatten et r-nucléarité sur les variétés compactes]
In this Note, we present criteria on both symbols and integral kernels ensuring that the corresponding operators on compact manifolds belong to Schatten classes. A specific test for nuclearity is established as well as the corresponding trace formulae. In the special case of compact Lie groups, kernel criteria in terms of (locally and globally) hypoelliptic operators are also given. A notion of invariant operator and its full symbol associated with an elliptic operator are introduced. Some applications to the study of r-nuclearity on
Nous présentons dans cette Note des critères sur des symboles et noyaux pour s'assurer de ce que les opérateurs correspondants sur des variétés compactes appartiennent à une classe de Schatten. Les opérateurs à trace sont considérés comme un cas spécial. Nous introduisons aussi des notions d'opérateur invariant et de symbole global associés à un opérateur elliptique et les appliquons à l'etude de la nucléarité.
Accepté le :
Publié le :
Julio Delgado 1 ; Michael Ruzhansky 1
@article{CRMATH_2014__352_10_779_0, author = {Julio Delgado and Michael Ruzhansky}, title = {Kernel and symbol criteria for {Schatten} classes and \protect\emph{r}-nuclearity on compact manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--784}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.012}, language = {en}, }
TY - JOUR AU - Julio Delgado AU - Michael Ruzhansky TI - Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds JO - Comptes Rendus. Mathématique PY - 2014 SP - 779 EP - 784 VL - 352 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2014.08.012 LA - en ID - CRMATH_2014__352_10_779_0 ER -
Julio Delgado; Michael Ruzhansky. Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 779-784. doi : 10.1016/j.crma.2014.08.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.012/
[1] , Proc. Int. Congr, Math, Moscow (1966), pp. 57-64
[2] Traceable integral kernels on countably generated measure spaces, Pac. J. Math., Volume 150 (1991) no. 2, pp. 229-240
[3] Estimates for the singular numbers of integral operators, Usp. Mat. Nauk, Volume 32 (1977), pp. 17-84
[4] Schatten–von Neumann properties in the Weyl calculus, J. Funct. Anal., Volume 259 (2010) no. 12, pp. 3080-3114
[5] The trace of nuclear operators on
[6] Eigenfunctions of the Laplacian on compact Riemannian manifolds, Asian J. Math., Volume 10 (2006) no. 1, pp. 115-125
[7] Schatten classes and traces on compact Lie groups, 2013 | arXiv
[8] Fourier multipliers, symbols and nuclearity on compact manifolds, 2014 | arXiv
[9]
[10] Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal., Volume 267 (2014) no. 3, pp. 772-798
[11] Fourier Integral Operators, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011 (MR0451313, reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973)
[12] Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., Volume 1955 (1955) no. 16 (140 pp)
[13] Remarks on global hypoellipticity, Trans. Amer. Math. Soc., Volume 183 (1973), pp. 153-164
[14] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218
[15] The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985
[16] The Analysis of Linear Partial Differential Operators, vol. IV, Springer-Verlag, 1985
[17] Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo-Differential Operators: Theory and Applications, vol. 2, Birkhäuser Verlag, Basel, Switzerland, 2010
[18] Global quantization of pseudo-differential operators on compact Lie groups,
[19] Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity, J. Fourier Anal. Appl., Volume 20 (2014) no. 3, pp. 476-499
[20] Integro-differential operators on vector bundles, Trans. Amer. Math. Soc., Volume 117 (1965), pp. 167-204
[21] Eigenfunction expansions of analytic functions, Proc. Amer. Math. Soc., Volume 21 (1969), pp. 734-738
[22] Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, USA, 1971
[23] Schatten properties for pseudo-differential operators on modulation spaces, Pseudo-differential Operators, Lecture Notes in Mathematics, vol. 1949, Springer, Berlin, 2008, pp. 175-202
[24] Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132
[25] Special Trigonometric Series in k-Dimensions, Mem. Amer. Math. Soc., vol. 59, American Mathematical Society, Providence, RI, USA, 1965 (102 pp)
- Schatten-von Neumann Classes "Equation missing" ) on the Torus for $0
, Extended Abstracts 2021/2022, Volume 2 (2024), p. 13 | DOI:10.1007/978-3-031-42539-4_2
- The Index of Toeplitz Operators on Compact Lie Groups and on Simply Connected Closed 3-Manifolds, Analysis, Applications, and Computations (2023), p. 483 | DOI:10.1007/978-3-031-36375-7_37
- The nuclear trace of periodic vector‐valued pseudo‐differential operators with applications to index theory, Mathematische Nachrichten, Volume 294 (2021) no. 9, p. 1657 | DOI:10.1002/mana.201900040
- The Dixmier Trace and the Noncommutative Residue for Multipliers on Compact Manifolds, Advances in Harmonic Analysis and Partial Differential Equations (2020), p. 121 | DOI:10.1007/978-3-030-58215-9_5
- Global hypoellipticity for strongly invariant operators, Journal of Mathematical Analysis and Applications, Volume 486 (2020) no. 1, p. 123878 | DOI:10.1016/j.jmaa.2020.123878
- Dixmier traces for discrete pseudo-differential operators, Journal of Pseudo-Differential Operators and Applications, Volume 11 (2020) no. 2, p. 647 | DOI:10.1007/s11868-020-00335-1
- The dixmier trace and Wodzicki residue for global pseudo-differential operators on compact maniolds, Revista Integración, Volume 38 (2020) no. 1, p. 67 | DOI:10.18273/revanu.v38n1-2020006
- On Nuclear
-Multipliers Associated to the Harmonic Oscillator, Analysis and Partial Differential Equations: Perspectives from Developing Countries, Volume 275 (2019), p. 31 | DOI:10.1007/978-3-030-05657-5_4 - Schatten properties, nuclearity and minimality of phase shift invariant spaces, Applied and Computational Harmonic Analysis, Volume 46 (2019) no. 1, p. 154 | DOI:10.1016/j.acha.2017.04.003
- On Some Spectral Properties of Pseudo-differential Operators on
T, Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 5, p. 2703 | DOI:10.1007/s00041-019-09680-2 -
-Boundedness and -Nuclearity of Multilinear Pseudo-differential Operators on and the Torus , Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 6, p. 2973 | DOI:10.1007/s00041-019-09689-7 - On the index of pseudo-differential operators on compact Lie groups, Journal of Pseudo-Differential Operators and Applications, Volume 10 (2019) no. 2, p. 285 | DOI:10.1007/s11868-018-0261-0
- On the nuclear trace of Fourier integral operators, Revista Integración, Volume 37 (2019) no. 2, p. 219 | DOI:10.18273/revint.v37n2-2019002
- Global hypoellipticity for first-order operators on closed smooth manifolds, Journal d'Analyse Mathématique, Volume 135 (2018) no. 2, p. 527 | DOI:10.1007/s11854-018-0039-6
- Fourier multipliers, symbols, and nuclearity on compact manifolds, Journal d'Analyse Mathématique, Volume 135 (2018) no. 2, p. 757 | DOI:10.1007/s11854-018-0052-9
- Factorizations and Singular Value Estimates of Operators with Gelfand–Shilov and Pilipović kernels, Journal of Fourier Analysis and Applications, Volume 24 (2018) no. 3, p. 666 | DOI:10.1007/s00041-017-9542-x
- Besov continuity for pseudo-differential operators on compact homogeneous manifolds, Journal of Pseudo-Differential Operators and Applications, Volume 9 (2018) no. 4, p. 861 | DOI:10.1007/s11868-017-0226-8
- Characterizations of nuclear pseudo-differential operators on ℤ with some applications, Mathematical Modelling of Natural Phenomena, Volume 13 (2018) no. 4, p. 33 | DOI:10.1051/mmnp/2018019
- Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes, Analysis and Applications, Volume 15 (2017) no. 03, p. 353 | DOI:10.1142/s0219530516500159
- Some Spectral Geometry Inequalities for Generalized Heat Potential Operators, Complex Analysis and Operator Theory, Volume 11 (2017) no. 6, p. 1371 | DOI:10.1007/s11785-016-0605-9
- Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary, Journal de Mathématiques Pures et Appliquées, Volume 107 (2017) no. 6, p. 758 | DOI:10.1016/j.matpur.2016.10.005
- Nuclear Pseudo-Differential Operators in Besov Spaces on Compact Lie Groups, Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 5, p. 1238 | DOI:10.1007/s00041-016-9512-8
- Geometric maximizers of Schatten norms of some convolution type integral operators, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, p. 444 | DOI:10.1016/j.jmaa.2017.07.007
-
L p -boundedness, compactness of pseudo-differential operators on compact Lie groups, Journal of Pseudo-Differential Operators and Applications, Volume 8 (2017) no. 1, p. 1 | DOI:10.1007/s11868-017-0186-z - Characterizations of nuclear pseudo-differential operators on
S 1 with applications to adjoints and products, Journal of Pseudo-Differential Operators and Applications, Volume 8 (2017) no. 2, p. 191 | DOI:10.1007/s11868-017-0199-7 - Nonharmonic Analysis of Boundary Value Problems, International Mathematics Research Notices, Volume 2016 (2016) no. 12, p. 3548 | DOI:10.1093/imrn/rnv243
- Approximation property and nuclearity on mixed‐normLp, modulation and Wiener amalgam spaces, Journal of the London Mathematical Society, Volume 94 (2016) no. 2, p. 391 | DOI:10.1112/jlms/jdw040
Cité par 27 documents. Sources : Crossref
Commentaires - Politique