Comptes Rendus
Mathematical analysis/Functional analysis
Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds
[Critères portant sur des symboles et noyaux pour les classes de Schatten et r-nucléarité sur les variétés compactes]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 779-784.

In this Note, we present criteria on both symbols and integral kernels ensuring that the corresponding operators on compact manifolds belong to Schatten classes. A specific test for nuclearity is established as well as the corresponding trace formulae. In the special case of compact Lie groups, kernel criteria in terms of (locally and globally) hypoelliptic operators are also given. A notion of invariant operator and its full symbol associated with an elliptic operator are introduced. Some applications to the study of r-nuclearity on Lp spaces are also obtained.

Nous présentons dans cette Note des critères sur des symboles et noyaux pour s'assurer de ce que les opérateurs correspondants sur des variétés compactes appartiennent à une classe de Schatten. Les opérateurs à trace sont considérés comme un cas spécial. Nous introduisons aussi des notions d'opérateur invariant et de symbole global associés à un opérateur elliptique et les appliquons à l'etude de la nucléarité.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.08.012

Julio Delgado 1 ; Michael Ruzhansky 1

1 Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom
@article{CRMATH_2014__352_10_779_0,
     author = {Julio Delgado and Michael Ruzhansky},
     title = {Kernel and symbol criteria for {Schatten} classes and \protect\emph{r}-nuclearity on compact manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--784},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.08.012},
     language = {en},
}
TY  - JOUR
AU  - Julio Delgado
AU  - Michael Ruzhansky
TI  - Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 779
EP  - 784
VL  - 352
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2014.08.012
LA  - en
ID  - CRMATH_2014__352_10_779_0
ER  - 
%0 Journal Article
%A Julio Delgado
%A Michael Ruzhansky
%T Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds
%J Comptes Rendus. Mathématique
%D 2014
%P 779-784
%V 352
%N 10
%I Elsevier
%R 10.1016/j.crma.2014.08.012
%G en
%F CRMATH_2014__352_10_779_0
Julio Delgado; Michael Ruzhansky. Kernel and symbol criteria for Schatten classes and r-nuclearity on compact manifolds. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 779-784. doi : 10.1016/j.crma.2014.08.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.012/

[1] M.F. Atiyah, Proc. Int. Congr, Math, Moscow (1966), pp. 57-64

[2] C. Brislawn Traceable integral kernels on countably generated measure spaces, Pac. J. Math., Volume 150 (1991) no. 2, pp. 229-240

[3] M.Š. Birman; M.Z. Solomjak Estimates for the singular numbers of integral operators, Usp. Mat. Nauk, Volume 32 (1977), pp. 17-84

[4] E. Buzano; J. Toft Schatten–von Neumann properties in the Weyl calculus, J. Funct. Anal., Volume 259 (2010) no. 12, pp. 3080-3114

[5] J. Delgado The trace of nuclear operators on Lp(μ) for σ-finite Borel measures on second countable spaces, Integral Equ. Oper. Theory, Volume 68 (2010) no. 1, pp. 61-74

[6] H. Donnelly Eigenfunctions of the Laplacian on compact Riemannian manifolds, Asian J. Math., Volume 10 (2006) no. 1, pp. 115-125

[7] J. Delgado; M. Ruzhansky Schatten classes and traces on compact Lie groups, 2013 | arXiv

[8] J. Delgado; M. Ruzhansky Fourier multipliers, symbols and nuclearity on compact manifolds, 2014 | arXiv

[9] J. Delgado; M. Ruzhansky Lp-nuclearity, traces, and Grothendieck–Lidskii formula on compact Lie groups, J. Math. Pures Appl. (9), Volume 102 (2014) no. 1, pp. 153-172

[10] J. Delgado; M. Ruzhansky Schatten classes on compact manifolds: kernel conditions, J. Funct. Anal., Volume 267 (2014) no. 3, pp. 772-798

[11] J.J. Duistermaat Fourier Integral Operators, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011 (MR0451313, reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973)

[12] A. Grothendieck Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., Volume 1955 (1955) no. 16 (140 pp)

[13] S.J. Greenfield; N.R. Wallach Remarks on global hypoellipticity, Trans. Amer. Math. Soc., Volume 183 (1973), pp. 153-164

[14] L. Hörmander The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218

[15] L. Hörmander The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985

[16] L. Hörmander The Analysis of Linear Partial Differential Operators, vol. IV, Springer-Verlag, 1985

[17] M. Ruzhansky; V. Turunen Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo-Differential Operators: Theory and Applications, vol. 2, Birkhäuser Verlag, Basel, Switzerland, 2010

[18] M. Ruzhansky; V. Turunen Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces, Int. Math. Res. Not., Volume 11 (2013), pp. 2439-2496 | DOI

[19] M. Ruzhansky; V. Turunen; J. Wirth Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity, J. Fourier Anal. Appl., Volume 20 (2014) no. 3, pp. 476-499

[20] R.T. Seeley Integro-differential operators on vector bundles, Trans. Amer. Math. Soc., Volume 117 (1965), pp. 167-204

[21] R.T. Seeley Eigenfunction expansions of analytic functions, Proc. Amer. Math. Soc., Volume 21 (1969), pp. 734-738

[22] E.M. Stein; G. Weiss Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, vol. 32, Princeton University Press, Princeton, NJ, USA, 1971

[23] J. Toft Schatten properties for pseudo-differential operators on modulation spaces, Pseudo-differential Operators, Lecture Notes in Mathematics, vol. 1949, Springer, Berlin, 2008, pp. 175-202

[24] J.A. Toth; S. Zelditch Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132

[25] S. Wainger Special Trigonometric Series in k-Dimensions, Mem. Amer. Math. Soc., vol. 59, American Mathematical Society, Providence, RI, USA, 1965 (102 pp)

  • Duván Cardona Schatten-von Neumann Classes "Equation missing" ) on the Torus for $0, Extended Abstracts 2021/2022, Volume 2 (2024), p. 13 | DOI:10.1007/978-3-031-42539-4_2
  • Duván Cardona The Index of Toeplitz Operators on Compact Lie Groups and on Simply Connected Closed 3-Manifolds, Analysis, Applications, and Computations (2023), p. 483 | DOI:10.1007/978-3-031-36375-7_37
  • Duván Cardona; Vishvesh Kumar The nuclear trace of periodic vector‐valued pseudo‐differential operators with applications to index theory, Mathematische Nachrichten, Volume 294 (2021) no. 9, p. 1657 | DOI:10.1002/mana.201900040
  • Duván Cardona; César Del Corral The Dixmier Trace and the Noncommutative Residue for Multipliers on Compact Manifolds, Advances in Harmonic Analysis and Partial Differential Equations (2020), p. 121 | DOI:10.1007/978-3-030-58215-9_5
  • Alexandre Kirilov; Wagner A.A. de Moraes Global hypoellipticity for strongly invariant operators, Journal of Mathematical Analysis and Applications, Volume 486 (2020) no. 1, p. 123878 | DOI:10.1016/j.jmaa.2020.123878
  • Duván Cardona; César del Corral; Vishvesh Kumar Dixmier traces for discrete pseudo-differential operators, Journal of Pseudo-Differential Operators and Applications, Volume 11 (2020) no. 2, p. 647 | DOI:10.1007/s11868-020-00335-1
  • duvan cardona; Cesar del corral The dixmier trace and Wodzicki residue for global pseudo-differential operators on compact maniolds, Revista Integración, Volume 38 (2020) no. 1, p. 67 | DOI:10.18273/revanu.v38n1-2020006
  • Edgardo Samuel Barraza; Duván Cardona On Nuclear Lp -Multipliers Associated to the Harmonic Oscillator, Analysis and Partial Differential Equations: Perspectives from Developing Countries, Volume 275 (2019), p. 31 | DOI:10.1007/978-3-030-05657-5_4
  • Joachim Toft Schatten properties, nuclearity and minimality of phase shift invariant spaces, Applied and Computational Harmonic Analysis, Volume 46 (2019) no. 1, p. 154 | DOI:10.1016/j.acha.2017.04.003
  • Juan Pablo Velasquez-Rodriguez On Some Spectral Properties of Pseudo-differential Operators on T T, Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 5, p. 2703 | DOI:10.1007/s00041-019-09680-2
  • Duván Cardona; Vishvesh Kumar Lp-Boundedness and Lp-Nuclearity of Multilinear Pseudo-differential Operators on Zn and the Torus Tn, Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 6, p. 2973 | DOI:10.1007/s00041-019-09689-7
  • Duván Cardona On the index of pseudo-differential operators on compact Lie groups, Journal of Pseudo-Differential Operators and Applications, Volume 10 (2019) no. 2, p. 285 | DOI:10.1007/s11868-018-0261-0
  • Duván Cardona On the nuclear trace of Fourier integral operators, Revista Integración, Volume 37 (2019) no. 2, p. 219 | DOI:10.18273/revint.v37n2-2019002
  • Fernando de Ávila Silva; Todor Gramchev; Alexandre Kirilov Global hypoellipticity for first-order operators on closed smooth manifolds, Journal d'Analyse Mathématique, Volume 135 (2018) no. 2, p. 527 | DOI:10.1007/s11854-018-0039-6
  • Julio Delgado; Michael Ruzhansky Fourier multipliers, symbols, and nuclearity on compact manifolds, Journal d'Analyse Mathématique, Volume 135 (2018) no. 2, p. 757 | DOI:10.1007/s11854-018-0052-9
  • Yuanyuan Chen; Mikael Signahl; Joachim Toft Factorizations and Singular Value Estimates of Operators with Gelfand–Shilov and Pilipović kernels, Journal of Fourier Analysis and Applications, Volume 24 (2018) no. 3, p. 666 | DOI:10.1007/s00041-017-9542-x
  • Duván Cardona Besov continuity for pseudo-differential operators on compact homogeneous manifolds, Journal of Pseudo-Differential Operators and Applications, Volume 9 (2018) no. 4, p. 861 | DOI:10.1007/s11868-017-0226-8
  • Majid JamalpourBirgani Characterizations of nuclear pseudo-differential operators on ℤ with some applications, Mathematical Modelling of Natural Phenomena, Volume 13 (2018) no. 4, p. 33 | DOI:10.1051/mmnp/2018019
  • Joachim Toft Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes, Analysis and Applications, Volume 15 (2017) no. 03, p. 353 | DOI:10.1142/s0219530516500159
  • Aidyn Kassymov; Durvudkhan Suragan Some Spectral Geometry Inequalities for Generalized Heat Potential Operators, Complex Analysis and Operator Theory, Volume 11 (2017) no. 6, p. 1371 | DOI:10.1007/s11785-016-0605-9
  • Julio Delgado; Michael Ruzhansky; Niyaz Tokmagambetov Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary, Journal de Mathématiques Pures et Appliquées, Volume 107 (2017) no. 6, p. 758 | DOI:10.1016/j.matpur.2016.10.005
  • Duván Cardona Nuclear Pseudo-Differential Operators in Besov Spaces on Compact Lie Groups, Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 5, p. 1238 | DOI:10.1007/s00041-016-9512-8
  • Michael Ruzhansky; Durvudkhan Suragan Geometric maximizers of Schatten norms of some convolution type integral operators, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, p. 444 | DOI:10.1016/j.jmaa.2017.07.007
  • M. B. Ghaemi; M. Jamalpour Birgani Lp L p -boundedness, compactness of pseudo-differential operators on compact Lie groups, Journal of Pseudo-Differential Operators and Applications, Volume 8 (2017) no. 1, p. 1 | DOI:10.1007/s11868-017-0186-z
  • M. B. Ghaemi; M. Jamalpour Birgani; M. W. Wong Characterizations of nuclear pseudo-differential operators on S1 S 1 with applications to adjoints and products, Journal of Pseudo-Differential Operators and Applications, Volume 8 (2017) no. 2, p. 191 | DOI:10.1007/s11868-017-0199-7
  • Michael Ruzhansky; Niyaz Tokmagambetov Nonharmonic Analysis of Boundary Value Problems, International Mathematics Research Notices, Volume 2016 (2016) no. 12, p. 3548 | DOI:10.1093/imrn/rnv243
  • J. Delgado; M. Ruzhansky; B. Wang Approximation property and nuclearity on mixed‐normLp, modulation and Wiener amalgam spaces, Journal of the London Mathematical Society, Volume 94 (2016) no. 2, p. 391 | DOI:10.1112/jlms/jdw040

Cité par 27 documents. Sources : Crossref

Commentaires - Politique