Comptes Rendus
Mathematical analysis/Functional analysis
Completeness on locally convex cones
Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 785-789.

We investigate complete and compact subsets for the lower, upper and symmetric topologies of a locally convex cone and prove that weakly closed sets will be weakly compact, whenever they are weakly precompact. This leads to the weak* compactness of the polars of neighborhoods and weak compactness of the lower, upper and symmetric neighborhoods.

Nous étudions des sous-ensembles complets et compacts pour le bas, le haut et les topologies symétriques d'un cône localement convexe, et prouvons que les ensembles faiblement fermés sont faiblement compacts à chaque fois qu'ils sont faiblement précompacts. Cela conduit à la faible* compacité des polaires des quartiers et à la faible compacité des quartiers inférieur, supérieur et symétrique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.005

Mohammad Reza Motallebi 1

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil, P.O. Box 179, Iran
@article{CRMATH_2014__352_10_785_0,
     author = {Mohammad Reza Motallebi},
     title = {Completeness on locally convex cones},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {785--789},
     publisher = {Elsevier},
     volume = {352},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.005},
     language = {en},
}
TY  - JOUR
AU  - Mohammad Reza Motallebi
TI  - Completeness on locally convex cones
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 785
EP  - 789
VL  - 352
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.005
LA  - en
ID  - CRMATH_2014__352_10_785_0
ER  - 
%0 Journal Article
%A Mohammad Reza Motallebi
%T Completeness on locally convex cones
%J Comptes Rendus. Mathématique
%D 2014
%P 785-789
%V 352
%N 10
%I Elsevier
%R 10.1016/j.crma.2014.09.005
%G en
%F CRMATH_2014__352_10_785_0
Mohammad Reza Motallebi. Completeness on locally convex cones. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 785-789. doi : 10.1016/j.crma.2014.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.005/

[1] K. Keimel; W. Roth Ordered Cones and Approximation, Lect. Notes Math., vol. 1517, Springer Verlag, Heidelberg, Berlin, New York, 1992

[2] M.R. Motallebi; H. Saiflu Duality on locally convex cones, J. Math. Anal. Appl., Volume 337 (2008), pp. 888-905

[3] M.R. Motallebi; D.H. Saiflu Products and direct sums in locally convex cones, Can. Math. Bull., Volume 55 (2012) no. 4, pp. 783-798

[4] W. Roth Locally convex lattice cones, J. Convex Anal., Volume 16 (2009), pp. 1-31

[5] W. Roth Operator-Valued Measures and Integrals for Cone-Valued Functions, Lect. Notes Math., vol. 1964, Springer Verlag, Heidelberg, Berlin, New York, 2009

[6] S. Willard General Topology, Addison-Wesley, Reading, 1970

Cited by Sources:

Comments - Policy