[Intégralité de cônes localement convexes]
Nous étudions des sous-ensembles complets et compacts pour le bas, le haut et les topologies symétriques d'un cône localement convexe, et prouvons que les ensembles faiblement fermés sont faiblement compacts à chaque fois qu'ils sont faiblement précompacts. Cela conduit à la faible* compacité des polaires des quartiers et à la faible compacité des quartiers inférieur, supérieur et symétrique.
We investigate complete and compact subsets for the lower, upper and symmetric topologies of a locally convex cone and prove that weakly closed sets will be weakly compact, whenever they are weakly precompact. This leads to the weak* compactness of the polars of neighborhoods and weak compactness of the lower, upper and symmetric neighborhoods.
Accepté le :
Publié le :
Mohammad Reza Motallebi 1
@article{CRMATH_2014__352_10_785_0, author = {Mohammad Reza Motallebi}, title = {Completeness on locally convex cones}, journal = {Comptes Rendus. Math\'ematique}, pages = {785--789}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.09.005}, language = {en}, }
Mohammad Reza Motallebi. Completeness on locally convex cones. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 785-789. doi : 10.1016/j.crma.2014.09.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.005/
[1] Ordered Cones and Approximation, Lect. Notes Math., vol. 1517, Springer Verlag, Heidelberg, Berlin, New York, 1992
[2] Duality on locally convex cones, J. Math. Anal. Appl., Volume 337 (2008), pp. 888-905
[3] Products and direct sums in locally convex cones, Can. Math. Bull., Volume 55 (2012) no. 4, pp. 783-798
[4] Locally convex lattice cones, J. Convex Anal., Volume 16 (2009), pp. 1-31
[5] Operator-Valued Measures and Integrals for Cone-Valued Functions, Lect. Notes Math., vol. 1964, Springer Verlag, Heidelberg, Berlin, New York, 2009
[6] General Topology, Addison-Wesley, Reading, 1970
- Boundedness components and Ekeland's type variational principles in locally convex cones, Optimization (2025), p. 1 | DOI:10.1080/02331934.2025.2478193
- A type of minimal and maximal point theorem in locally convex product cones, Optimization, Volume 74 (2025) no. 4, p. 939 | DOI:10.1080/02331934.2023.2277718
- Optimization problems for locally convex cone-valued functions, Indian Journal of Pure and Applied Mathematics, Volume 53 (2022) no. 4, p. 865 | DOI:10.1007/s13226-021-00192-8
- Ekeland’s type variational principle for locally convex cone-valued functions, Journal of Fixed Point Theory and Applications, Volume 23 (2021) no. 4 | DOI:10.1007/s11784-021-00902-z
- Weak compactness in locally convex cones, Positivity, Volume 23 (2019) no. 2, p. 303 | DOI:10.1007/s11117-018-0607-0
- Locally convex inductive limit cones, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 112 (2018) no. 4, p. 1431 | DOI:10.1007/s13398-017-0432-5
- Weak compactness of direct sums in locally convex cones, Studia Scientiarum Mathematicarum Hungarica, Volume 55 (2018) no. 4, p. 487 | DOI:10.1556/012.2018.55.4.1407
- On weak completeness of products and direct sums in locally convex cones, Periodica Mathematica Hungarica, Volume 75 (2017) no. 2, p. 322 | DOI:10.1007/s10998-017-0201-4
Cité par 8 documents. Sources : Crossref
Commentaires - Politique