In this paper, we consider a simple Lévy process given by a Brownian motion and a compensated Poisson process, whose drift and diffusion parameters as well as its intensity are unknown. Supposing that the process is observed discretely at high frequency, we derive the local asymptotic normality (LAN) property. In order to obtain this result, Malliavin calculus and Girsanov's theorem are applied in order to write the log-likelihood ratio in terms of sums of conditional expectations, for which a central limit theorem for triangular arrays can be applied.
Dans cet article, nous considérons un processus de Lévy simple donné par un mouvement brownien et un processus de Poisson compensé, dont les paramètres et l'intensité sont inconnus. En supposant que le processus est observé à haute fréquence, nous obtenons la propriété de normalité asymptotique locale. Pour cela, le calcul de Malliavin et le théorème de Girsanov sont appliqués afin d'écrire le logarithme du rapport de vraisemblances comme une somme d'espérances conditionnelles, pour laquelle un théorème central limite pour des suites triangulaires peut être appliqué.
Accepted:
Published online:
Arturo Kohatsu-Higa 1; Eulalia Nualart 2; Ngoc Khue Tran 3
@article{CRMATH_2014__352_10_859_0, author = {Arturo Kohatsu-Higa and Eulalia Nualart and Ngoc Khue Tran}, title = {LAN property for a simple {L\'evy} process}, journal = {Comptes Rendus. Math\'ematique}, pages = {859--864}, publisher = {Elsevier}, volume = {352}, number = {10}, year = {2014}, doi = {10.1016/j.crma.2014.08.013}, language = {en}, }
Arturo Kohatsu-Higa; Eulalia Nualart; Ngoc Khue Tran. LAN property for a simple Lévy process. Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, pp. 859-864. doi : 10.1016/j.crma.2014.08.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.013/
[1] Fisher's information for discretely sampled Lévy processes, Econometrica, Volume 76 (2008), pp. 727-761
[2] Asymptotic lower bounds in estimating jumps, Bernoulli, Volume 20 (2014), pp. 1059-1096
[3] On the estimation of the diffusion coefficient for multi-dimensional diffusion processes, Ann. Inst. Henri Poincaré B, Probab. Stat., Volume 29 (1993), pp. 119-151
[4] LAMN property for hidden processes: the case of integrated diffusions, Ann. Inst. Henri Poincaré B, Probab. Stat., Volume 44 (2008), pp. 104-128
[5] LAMN property for elliptic diffusions: a Malliavin calculus approach, Bernoulli, Volume 7 (2001), pp. 899-912
[6] LAN property for ergodic diffusions with discrete observations, Ann. Inst. Henri Poincaré, Volume 38 (2002), pp. 711-737
[7] LAN property for Ornstein–Uhlenbeck processes with jumps under discrete sampling, J. Theor. Probab., Volume 26 (2013), pp. 932-967
[8] Quasi-likelihood analysis for the stochastic differential equation with jumps, Stat. Inference Stoch. Process., Volume 14 (2011), pp. 189-229
Cited by Sources:
Comments - Policy