In this note, we consider the non-negative least-square method with a random matrix. This problem has connections with the probability that the origin is not in the convex hull of many random points. As related problems, suitable estimates are obtained as well on the probability that a small ball does not hit the convex hull.
Dans cette Note, nous appliquons la méthode des moindres carrés non négatifs d'une matrice aléatoire. Ce problème est connecté à la probabilité que l'enveloppe convexe de points aléatoires ne contienne pas l'origine. En relation avec ce problème, nous obtenons aussi des estimations de la probabilité qu'une petite boule ne rencontre pas une enveloppe convexe.
Accepted:
Published online:
Zhenxia Liu 1; Xiangfeng Yang 2
@article{CRMATH_2014__352_11_935_0, author = {Zhenxia Liu and Xiangfeng Yang}, title = {Probabilities of hitting a convex hull}, journal = {Comptes Rendus. Math\'ematique}, pages = {935--940}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.08.015}, language = {en}, }
Zhenxia Liu; Xiangfeng Yang. Probabilities of hitting a convex hull. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 935-940. doi : 10.1016/j.crma.2014.08.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.08.015/
[1] Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging, SIAM J. Matrix Anal. Appl., Volume 27 (2006) no. 4, pp. 1184-1197
[2] A combinatorial lemma for complex numbers, Ann. Math. Stat., Volume 32 (1961) no. 3, pp. 901-904
[3] Counting the faces of randomly-projected hypercubes and orthants, with applications, Discrete Comput. Geom., Volume 43 (2010) no. 3, pp. 522-541
[4] et al. Maximum entropy and the nearly black object, J. R. Stat. Soc., Volume 54 (1992) no. 1, pp. 41-81
[5] The convex hull of a random set of points, Biometrika, Volume 52 (1965), pp. 331-343
[6] Coverage problems and random convex hulls, J. Appl. Probab., Volume 19 (1982), pp. 546-561
[7] Parametric deconvolution of positive spike trains, Ann. Stat., Volume 28 (2000) no. 5, pp. 1279-1301
[8] Random convex hulls and extreme value statistics, J. Stat. Phys., Volume 138 (2010) no. 6, pp. 955-1009
[9] Über die konvexe Hülle von n zufällig gewählten Punkten, Probab. Theory Relat. Fields, Volume 2 (1963) no. 1, pp. 75-84
[10] The circumference of a convex polygon, Proc. Amer. Math. Soc., Volume 12 (1961) no. 3, pp. 506-509
[11] A problem in geometric probability, Math. Scand., Volume 11 (1962), pp. 109-111
Cited by Sources:
Comments - Policy