A phase conjugation algorithm for localizing the spatial support of an extended radiating current source from boundary measurements of the electric field over a finite set of frequencies is presented. An imaging function using a full frequency bandwidth is established and analyzed. It is subsequently adopted to the case of finite frequency measurements. Finally, the algorithm is blended with -regularization in order to deal with the artifacts associated with finite frequency data.
Dans cette note, nous présentons un algorithme de conjugaison de phase pour la reconstruction d'une source étendue à partir de mesures de champ électrique obtenues pour un ensemble fini de fréquences. Nous commençons par introduire et analyser une fonctionnelle d'imagerie à partir de mesures obtenues pour un intervalle de fréquences. Ensuite, nous proposons une régularisation d'une telle fonctionnelle d'imagerie afin d'éliminer les artefacts dus à l'aspect discret et limité des fréquences utilisées.
Accepted:
Published online:
Abdul Wahab 1; Amer Rasheed 1; Rab Nawaz 2; Saman Anjum 1
@article{CRMATH_2014__352_11_917_0, author = {Abdul Wahab and Amer Rasheed and Rab Nawaz and Saman Anjum}, title = {Localization of extended current source with finite frequencies}, journal = {Comptes Rendus. Math\'ematique}, pages = {917--921}, publisher = {Elsevier}, volume = {352}, number = {11}, year = {2014}, doi = {10.1016/j.crma.2014.09.009}, language = {en}, }
TY - JOUR AU - Abdul Wahab AU - Amer Rasheed AU - Rab Nawaz AU - Saman Anjum TI - Localization of extended current source with finite frequencies JO - Comptes Rendus. Mathématique PY - 2014 SP - 917 EP - 921 VL - 352 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2014.09.009 LA - en ID - CRMATH_2014__352_11_917_0 ER -
Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum. Localization of extended current source with finite frequencies. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 917-921. doi : 10.1016/j.crma.2014.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.009/
[1] Introduction to Mathematics of Emerging Biomedical Imaging, Mathématiques et Applications, vol. 62, Springer-Verlag, Berlin, 2008
[2] Time reversal in attenuating acoustic media, Mathematical and Statistical Methods for Imaging, Contemporary Mathematics, vol. 548, American Mathematical Society, Providence, USA, 2011, pp. 151-163
[3] Noise source localization in an attenuating medium, SIAM J. Appl. Math., Volume 72 (2012), pp. 317-336
[4] Photoacoustic imaging for attenuating acoustic media, Mathematical Modeling in Biomedical Imaging II, Lecture Notes in Mathematics, vol. 2035, Springer-Verlag, Berlin, 2012, pp. 57-84
[5] Time reversal algorithms in viscoelastic media, Eur. J. Appl. Math., Volume 24 (2013), pp. 565-600
[6] Mathematical and Statistical Methods for Multistatic Imaging, Lecture Notes in Mathematics, vol. 2098, Springer, 2014
[7] A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., Volume 2 (2009), pp. 183-202
[8] Theory of the time reversal cavity for electromagnetic fields, Opt. Lett., Volume 32 (2007), pp. 3107-3109
[9] Reverse time migration for extended obstacles: electromagnetic waves, Inverse Probl., Volume 29 (2013) (Paper ID. 085006)
[10] Time reversed acoustics, Phys. Today, Volume 50 (1997) no. 3, pp. 34-40
[11] Wave Propagation and Time Reversal in Randomly Layered Media, Springer, 2007
[12] Electromagnetic time reversal and scattering by a small dielectric inclusion, J. Phys. Conf. Ser., Volume 386 (2012) (Paper ID. 012010)
[13] Electromagnetic source identification using multiple frequency information, Inverse Probl., Volume 28 (2012) (Paper ID. 115002)
[14] Electromagnetic time reversal algorithms and localization in lossy dielectric media, Commun. Theor. Phys. (2014) (forthcoming)
Cited by Sources:
Comments - Policy