Comptes Rendus
Partial differential equations/Numerical analysis
Localization of extended current source with finite frequencies
Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 917-921.

A phase conjugation algorithm for localizing the spatial support of an extended radiating current source from boundary measurements of the electric field over a finite set of frequencies is presented. An imaging function using a full frequency bandwidth is established and analyzed. It is subsequently adopted to the case of finite frequency measurements. Finally, the algorithm is blended with l1-regularization in order to deal with the artifacts associated with finite frequency data.

Dans cette note, nous présentons un algorithme de conjugaison de phase pour la reconstruction d'une source étendue à partir de mesures de champ électrique obtenues pour un ensemble fini de fréquences. Nous commençons par introduire et analyser une fonctionnelle d'imagerie à partir de mesures obtenues pour un intervalle de fréquences. Ensuite, nous proposons une régularisation l1 d'une telle fonctionnelle d'imagerie afin d'éliminer les artefacts dus à l'aspect discret et limité des fréquences utilisées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2014.09.009

Abdul Wahab 1; Amer Rasheed 1; Rab Nawaz 2; Saman Anjum 1

1 COMSATS Institute of Information Technology, G. T. Road, 47040, Wah Cantt., Pakistan
2 COMSATS Institute of Information Technology, Park Road, Chak Shahzad, 44000, Islamabad, Pakistan
@article{CRMATH_2014__352_11_917_0,
     author = {Abdul Wahab and Amer Rasheed and Rab Nawaz and Saman Anjum},
     title = {Localization of extended current source with finite frequencies},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {917--921},
     publisher = {Elsevier},
     volume = {352},
     number = {11},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.009},
     language = {en},
}
TY  - JOUR
AU  - Abdul Wahab
AU  - Amer Rasheed
AU  - Rab Nawaz
AU  - Saman Anjum
TI  - Localization of extended current source with finite frequencies
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 917
EP  - 921
VL  - 352
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.009
LA  - en
ID  - CRMATH_2014__352_11_917_0
ER  - 
%0 Journal Article
%A Abdul Wahab
%A Amer Rasheed
%A Rab Nawaz
%A Saman Anjum
%T Localization of extended current source with finite frequencies
%J Comptes Rendus. Mathématique
%D 2014
%P 917-921
%V 352
%N 11
%I Elsevier
%R 10.1016/j.crma.2014.09.009
%G en
%F CRMATH_2014__352_11_917_0
Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum. Localization of extended current source with finite frequencies. Comptes Rendus. Mathématique, Volume 352 (2014) no. 11, pp. 917-921. doi : 10.1016/j.crma.2014.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.009/

[1] H. Ammari Introduction to Mathematics of Emerging Biomedical Imaging, Mathématiques et Applications, vol. 62, Springer-Verlag, Berlin, 2008

[2] H. Ammari; E. Bretin; J. Garnier; A. Wahab Time reversal in attenuating acoustic media, Mathematical and Statistical Methods for Imaging, Contemporary Mathematics, vol. 548, American Mathematical Society, Providence, USA, 2011, pp. 151-163

[3] H. Ammari; E. Bretin; J. Garnier; A. Wahab Noise source localization in an attenuating medium, SIAM J. Appl. Math., Volume 72 (2012), pp. 317-336

[4] H. Ammari; E. Bretin; V. Jugnon; A. Wahab Photoacoustic imaging for attenuating acoustic media, Mathematical Modeling in Biomedical Imaging II, Lecture Notes in Mathematics, vol. 2035, Springer-Verlag, Berlin, 2012, pp. 57-84

[5] H. Ammari; E. Bretin; J. Garnier; A. Wahab Time reversal algorithms in viscoelastic media, Eur. J. Appl. Math., Volume 24 (2013), pp. 565-600

[6] H. Ammari; J. Garnier; W. Jing; H. Kang; M. Lim; K. Sølna; H. Wang Mathematical and Statistical Methods for Multistatic Imaging, Lecture Notes in Mathematics, vol. 2098, Springer, 2014

[7] A. Beck; M. Teboulle A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., Volume 2 (2009), pp. 183-202

[8] R. Carminati; R. Pierrat; J. de Rosny; M. Fink Theory of the time reversal cavity for electromagnetic fields, Opt. Lett., Volume 32 (2007), pp. 3107-3109

[9] J. Chen; Z. Chen; G. Huang Reverse time migration for extended obstacles: electromagnetic waves, Inverse Probl., Volume 29 (2013) (Paper ID. 085006)

[10] M. Fink Time reversed acoustics, Phys. Today, Volume 50 (1997) no. 3, pp. 34-40

[11] J.P. Fouque; J. Garnier; G. Papanicolaou; K. Sølna Wave Propagation and Time Reversal in Randomly Layered Media, Springer, 2007

[12] S. Gdoura; A. Wahab; D. Lesselier Electromagnetic time reversal and scattering by a small dielectric inclusion, J. Phys. Conf. Ser., Volume 386 (2012) (Paper ID. 012010)

[13] N.P. Valdivia Electromagnetic source identification using multiple frequency information, Inverse Probl., Volume 28 (2012) (Paper ID. 115002)

[14] A. Wahab; A. Rasheed; T. Hayat; R. Nawaz Electromagnetic time reversal algorithms and localization in lossy dielectric media, Commun. Theor. Phys. (2014) (forthcoming)

Cited by Sources:

Comments - Policy