Comptes Rendus
Algebra/Homological algebra
Some properties of the extremal algebras
[Quelques propriétés des algèbres extrémales]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 985-990.

En nous appuyant sur les travaux de Fløystad et Vatne, nous décrivons quelques propriétés homologiques des algèbres extrémales. Plus précisément, nous montrons que les algèbres extrémales sont intègres, nœthériennes, régulières au sens d'Auslander, de Cohen–Macaulay et de Calabi–Yau. Nous calculons également les modules cycliques de la série de Hilbert (1t)1 sur ces algèbres extrémales.

The (generalized) extremal algebra [4] is Noetherian, Auslander regular and Cohen–Macaulay. A necessary and sufficient condition is given for the generalized extremal algebras being Calabi–Yau. The point modules over these algebras are described explicitly.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.09.028

Shengqiang Wang 1 ; Quanshui Wu 2

1 Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China
@article{CRMATH_2014__352_12_985_0,
     author = {Shengqiang Wang and Quanshui Wu},
     title = {Some properties of the extremal algebras},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {985--990},
     publisher = {Elsevier},
     volume = {352},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crma.2014.09.028},
     language = {en},
}
TY  - JOUR
AU  - Shengqiang Wang
AU  - Quanshui Wu
TI  - Some properties of the extremal algebras
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 985
EP  - 990
VL  - 352
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2014.09.028
LA  - en
ID  - CRMATH_2014__352_12_985_0
ER  - 
%0 Journal Article
%A Shengqiang Wang
%A Quanshui Wu
%T Some properties of the extremal algebras
%J Comptes Rendus. Mathématique
%D 2014
%P 985-990
%V 352
%N 12
%I Elsevier
%R 10.1016/j.crma.2014.09.028
%G en
%F CRMATH_2014__352_12_985_0
Shengqiang Wang; Quanshui Wu. Some properties of the extremal algebras. Comptes Rendus. Mathématique, Volume 352 (2014) no. 12, pp. 985-990. doi : 10.1016/j.crma.2014.09.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.09.028/

[1] M. Artin; J. Tate; M. Van den Bergh Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Prog. Math., vol. 86, 1990, pp. 33-85

[2] M. Artin; L.W. Small; J.J. Zhang Generic flatness for strongly Noetherian algebras, J. Algebra, Volume 221 (1999), pp. 579-610

[3] G.M. Bergman The diamond lemma for ring theory, Adv. Math., Volume 29 (1978), pp. 178-218

[4] G. Fløystad; J.E. Vatne Artin–Schelter regular algebras of dimension five, Algebras, Geometry and Mathematical Physics, Banach Center Publ., vol. 93, 2011, pp. 19-39

[5] N. Jing; J.J. Zhang Gorensteinness of invariant subrings of quantum algebras, J. Algebra, Volume 221 (1999), pp. 669-691

[6] P. Jorgensen; J.J. Zhang Gourmet's guide for Gorensteinness, Adv. Math., Volume 151 (2000), pp. 313-345

[7] M. Reyes; D. Rogalski; J.J. Zhang Skew Calabi–Yau algebras and homological identities, Adv. Math., Volume 264 (2014), pp. 308-354

[8] M. Van den Bergh Existence theorems for dualizing complexes over non-commutative graded and filtered rings, J. Algebra, Volume 195 (1997), pp. 662-679

[9] J.J. Zhang Twisted graded algebras and equivalences of graded categories, Proc. Lond. Math. Soc., Volume 72 (1996), pp. 281-311

[10] J.J. Zhang Connected graded Gorenstein algebras with enough normal elements, J. Algebra, Volume 189 (1997), pp. 390-405

[11] G.-S. Zhou; D.-M. Lu Artin–Schelter regular algebras of dimension five with two generators, J. Pure Appl. Algebra, Volume 218 (2014), pp. 937-961

Cité par Sources :

Commentaires - Politique