On démontre que la dimension de Hochschild des algèbres
It is a basic fact that the global dimension of a connected
Accepté le :
Publié le :
Roland Berger 1
@article{CRMATH_2005__341_10_597_0, author = {Roland Berger}, title = {Dimension de {Hochschild} des alg\`ebres gradu\'ees}, journal = {Comptes Rendus. Math\'ematique}, pages = {597--600}, publisher = {Elsevier}, volume = {341}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.09.039}, language = {fr}, }
Roland Berger. Dimension de Hochschild des algèbres graduées. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 597-600. doi : 10.1016/j.crma.2005.09.039. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.039/
[1] Graded algebras of global dimension 3, Adv. Math., Volume 66 (1987), pp. 171-216
[2] Some Algebras Associated to Automorphisms of Elliptic Curves, The Grothendieck Festschrift, vol. 1, Birkhäuser, Basel, 1990
[3] Koszulity for nonquadratic algebras, J. Algebra, Volume 239 (2001), pp. 705-734
[4] Homogeneous algebras, J. Algebra, Volume 261 (2003), pp. 172-185
[5] Symplectic reflection algebras and non-homogeneous N-Koszul property | arXiv
[6] Koszul and Gorenstein properties for homogeneous algebras (Alg. Rep. Theory, à paraître) | arXiv
[7] Algèbre homologique, Masson, 1980 (Chapitre 10 du livre d'Algèbre)
[8] H. Cartan, Homologie et cohomologie d'une algèbre graduée, Séminaire Cartan, Paris, 1958–59, exposé 15
[9] Homological Algebra, Princeton University Press, 1956
[10] Yang–Mills algebra, Lett. Math. Phys., Volume 61 (2002), pp. 149-158
[11] Yang–Mills and some related algebras | arXiv
[12] Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples, Comm. Math. Phys., Volume 230 (2002), pp. 539-579
[13] Moduli space and structure of noncommutative 3-spheres, Lett. Math. Phys., Volume 66 (2003), pp. 91-121
[14] PBW-deformations of N-Koszul algebras | arXiv
[15] Graded Ring Theory, North-Holland, 1982
[16] Sklyanin elliptic algebras, Functional Anal. Appl., Volume 23 (1989), pp. 207-214
[17] Noncommutative projective geometry, ICM 2002, vol. II, Beijing Higher Education Press, 2002, pp. 93-103
[18] Homological properties of Sklyanin algebras, Invent. Math., Volume 124 (1996), pp. 619-647
[19] An Introduction to Homological Algebra, Cambridge University Press, 1994
Cité par Sources :
Commentaires - Politique