On démontre que la dimension de Hochschild des algèbres
It is a basic fact that the global dimension of a connected
Accepté le :
Publié le :
Roland Berger 1
@article{CRMATH_2005__341_10_597_0, author = {Roland Berger}, title = {Dimension de {Hochschild} des alg\`ebres gradu\'ees}, journal = {Comptes Rendus. Math\'ematique}, pages = {597--600}, publisher = {Elsevier}, volume = {341}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.09.039}, language = {fr}, }
Roland Berger. Dimension de Hochschild des algèbres graduées. Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, pp. 597-600. doi : 10.1016/j.crma.2005.09.039. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.039/
[1] Graded algebras of global dimension 3, Adv. Math., Volume 66 (1987), pp. 171-216
[2] Some Algebras Associated to Automorphisms of Elliptic Curves, The Grothendieck Festschrift, vol. 1, Birkhäuser, Basel, 1990
[3] Koszulity for nonquadratic algebras, J. Algebra, Volume 239 (2001), pp. 705-734
[4] Homogeneous algebras, J. Algebra, Volume 261 (2003), pp. 172-185
[5] Symplectic reflection algebras and non-homogeneous N-Koszul property | arXiv
[6] Koszul and Gorenstein properties for homogeneous algebras (Alg. Rep. Theory, à paraître) | arXiv
[7] Algèbre homologique, Masson, 1980 (Chapitre 10 du livre d'Algèbre)
[8] H. Cartan, Homologie et cohomologie d'une algèbre graduée, Séminaire Cartan, Paris, 1958–59, exposé 15
[9] Homological Algebra, Princeton University Press, 1956
[10] Yang–Mills algebra, Lett. Math. Phys., Volume 61 (2002), pp. 149-158
[11] Yang–Mills and some related algebras | arXiv
[12] Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples, Comm. Math. Phys., Volume 230 (2002), pp. 539-579
[13] Moduli space and structure of noncommutative 3-spheres, Lett. Math. Phys., Volume 66 (2003), pp. 91-121
[14] PBW-deformations of N-Koszul algebras | arXiv
[15] Graded Ring Theory, North-Holland, 1982
[16] Sklyanin elliptic algebras, Functional Anal. Appl., Volume 23 (1989), pp. 207-214
[17] Noncommutative projective geometry, ICM 2002, vol. II, Beijing Higher Education Press, 2002, pp. 93-103
[18] Homological properties of Sklyanin algebras, Invent. Math., Volume 124 (1996), pp. 619-647
[19] An Introduction to Homological Algebra, Cambridge University Press, 1994
- Graded twisted Calabi-Yau algebras are generalized Artin-Schelter regular, Nagoya Mathematical Journal, Volume 245 (2022), pp. 100-153 | DOI:10.1017/nmj.2020.32 | Zbl:1502.14009
- Koszul calculus of preprojective algebras, Journal of the London Mathematical Society. Second Series, Volume 102 (2020) no. 3, pp. 1241-1292 | DOI:10.1112/jlms.12362 | Zbl:1480.16048
- Noncommutative Euclidean spaces, Journal of Geometry and Physics, Volume 130 (2018), pp. 315-330 | DOI:10.1016/j.geomphys.2018.04.006 | Zbl:1392.58007
- Noncommutative products of Euclidean spaces, Letters in Mathematical Physics, Volume 108 (2018) no. 11, pp. 2491-2513 | DOI:10.1007/s11005-018-1090-z | Zbl:1400.16021
- Twisted semigroup algebras, Algebras and Representation Theory, Volume 18 (2015) no. 5, pp. 1155-1186 | DOI:10.1007/s10468-015-9525-z | Zbl:1388.16030
- Poincaré duality for Koszul algebras., Algebra, geometry and mathematical physics. AGMP, Mulhouse, France, October 24-26, 2011. Proceedings, Berlin: Springer, 2014, pp. 3-26 | DOI:10.1007/978-3-642-55361-5_1 | Zbl:1321.16016
- From Koszul duality to Poincaré duality, Pramana, Volume 78 (2012) no. 6, p. 947 | DOI:10.1007/s12043-012-0320-7
-
-homogeneous superalgebras., Journal of Noncommutative Geometry, Volume 2 (2008) no. 1, pp. 1-51 | DOI:10.4171/jncg/15 | Zbl:1151.16028 - A numerical criterion for the generalized Koszul property., Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 344 (2007) no. 9, pp. 545-548 | DOI:10.1016/j.crma.2007.02.014 | Zbl:1142.16017
- Multilinear forms and graded algebras, Journal of Algebra, Volume 317 (2007) no. 1, pp. 198-225 | DOI:10.1016/j.jalgebra.2007.02.007 | Zbl:1141.17010
- Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras., Journal of Noncommutative Geometry, Volume 1 (2007) no. 2, pp. 241-270 | DOI:10.4171/jncg/6 | Zbl:1161.16022
- Twisted Poincaré duality for some quadratic Poisson algebras, Letters in Mathematical Physics, Volume 79 (2007) no. 2, pp. 161-174 | DOI:10.1007/s11005-006-0133-z | Zbl:1139.17008
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier