Comptes Rendus
Functional analysis/Algebraic geometry
Functional calculus on Nœtherian schemes
[Calcul fonctionnel sur les schémas nœthériens]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 57-61.

La présente Note est consacrée à un problème de calcul fonctionnel sur les sections d'un faisceau quasi cohérent d'un schéma nœthérien. Nous démontrons des analogues des résultats connus du calcul fonctionnel holomorphe en plusieurs variables sur les modules de Fréchet, essentiellement dus à J. Taylor et M. Putinar. Nous considérons un analogue du spectre joint de Taylor dans un cadre très général, conduisant à des sous-variétés d'une variété algébrique sur un corps algébriquement clos. En particulier, toute variété algébrique est réalisée comme le spectre joint des opérateurs de multiplication par les coordonnées correspondantes.

The present note is devoted to the functional calculus problem for sections of a quasi-coherent sheaf on a Nœtherian scheme. We prove scheme-theoretic analogs of the known results on the multivariable holomorphic functional calculus over Fréchet modules which are mainly due to of J. Taylor and M. Putinar. The generalization of the Taylor joint spectrum considered in the paper leads to subvarieties of an algebraic variety over an algebraically closed field. In particular, every algebraic variety is represented as the joint spectrum of related coordinate multiplication operators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.10.007

Anar Dosi 1

1 Middle East Technical University Northern Cyprus Campus, Guzelyurt, KKTC, Mersin 10, Turkey
@article{CRMATH_2015__353_1_57_0,
     author = {Anar Dosi},
     title = {Functional calculus on {N{\oe}therian} schemes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {57--61},
     publisher = {Elsevier},
     volume = {353},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crma.2014.10.007},
     language = {en},
}
TY  - JOUR
AU  - Anar Dosi
TI  - Functional calculus on Nœtherian schemes
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 57
EP  - 61
VL  - 353
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2014.10.007
LA  - en
ID  - CRMATH_2015__353_1_57_0
ER  - 
%0 Journal Article
%A Anar Dosi
%T Functional calculus on Nœtherian schemes
%J Comptes Rendus. Mathématique
%D 2015
%P 57-61
%V 353
%N 1
%I Elsevier
%R 10.1016/j.crma.2014.10.007
%G en
%F CRMATH_2015__353_1_57_0
Anar Dosi. Functional calculus on Nœtherian schemes. Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 57-61. doi : 10.1016/j.crma.2014.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.10.007/

[1] D. Beltiţă Spectrum for a solvable Lie algebra of operators, Stud. Math., Volume 135 (1999) no. 2, pp. 163-178

[2] N. Bourbaki Commutative Algebra, Mir, Moscow, 1971 (Ch. 1–7)

[3] P. Cade; R. Yang Projective spectrum and cyclic cohomology, J. Funct. Anal., Volume 265 (2013), pp. 1916-1933

[4] M. Cho; M. Takaguchi Joint spectra of matrices, Sci. Rep. Hirosaki Univ., Volume 26 (1979), pp. 15-19

[5] I. Colojoařa; C. Foiaş Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968

[6] A.A. Dosi Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations, Algebra Colloq., Volume 17 (2010) no. 1, pp. 749-788

[7] A.A. Dosi Taylor functional calculus for supernilpotent Lie algebra of operators, J. Oper. Theory, Volume 63 (2010) no. 1, pp. 101-126

[8] A.A. Dosiev Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems, J. Funct. Anal., Volume 230 (2006) no. 2, pp. 446-493

[9] J. Eschmeier; M. Putinar Spectral theory and sheaf theory, III, J. Reine Angew. Math., Volume 354 (1984), pp. 150-163

[10] J. Eschmeier; M. Putinar Spectral Decompositions and Analytic Sheaves, London Math. Soc., Clarendon Press, Oxford, 1996

[11] R. Hartshorne (Grad. Texts Math.), Volume vol. 52, Springer-Verlag (1977), p. 496

[12] A.Ya. Helemskii Homology of Banach and Topological Algebras, MGU, 1986

[13] M. Putinar Functional calculus with sections of an analytic space, J. Oper. Theory, Volume 4 (1980), pp. 297-306

[14] M. Putinar Spectral theory and sheaf theory. II, Math. Z., Volume 192 (1986), pp. 473-490

[15] M. Putinar Spectral theory and sheaf theory. IV, Proc. Symp. Pure Math., Volume 51 (1990), pp. 273-293

[16] D. Quillen Projective modules over polynomial rings, Invent. Math., Volume 36 (1976), pp. 167-171

[17] J.L. Taylor A joint spectrum for several commuting operators, J. Funct. Anal., Volume 6 (1970), pp. 172-191

[18] J.L. Taylor A general framework for a multi-operator functional calculus, Adv. Math., Volume 9 (1972), pp. 183-252

[19] F.-H. Vasilescu Analytic Functional Calculus and Spectral Decompositions, Reidel, Dordrecht, The Netherlands, 1982

[20] R. Yang Projective spectrum in Banach algebras, J. Topol. Anal., Volume 1 (2009) no. 3, pp. 289-306

Cité par Sources :

Commentaires - Politique