[Cas extrêmes pour le seuil log-canonique]
Accepté le :
Publié le :
Alexander Rashkovskii 1
@article{CRMATH_2015__353_1_21_0, author = {Alexander Rashkovskii}, title = {Extremal cases for the log canonical threshold}, journal = {Comptes Rendus. Math\'ematique}, pages = {21--24}, publisher = {Elsevier}, volume = {353}, number = {1}, year = {2015}, doi = {10.1016/j.crma.2014.11.002}, language = {en}, }
Alexander Rashkovskii. Extremal cases for the log canonical threshold. Comptes Rendus. Mathématique, Volume 353 (2015) no. 1, pp. 21-24. doi : 10.1016/j.crma.2014.11.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.11.002/
[1] Monge–Ampère measures on pluripolar sets, J. Math. Pures Appl. (9), Volume 92 (2009) no. 6, pp. 613-627
[2] Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math., Volume 222 (2009) no. 6, pp. 2036-2058
[3] Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 6, pp. 1633-1662
[4] Joint reductions of monomial ideals and multiplicity of complex analytic maps, Math. Res. Lett., Volume 15 (2008) no. 2, pp. 389-407
[5] Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 449-494
[6] The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 1, pp. 159-179
[7] Convergence in capacity, Can. Math. Bull., Volume 55 (2012) no. 2, pp. 242-248
[8] Subextension of plurisubharmonic functions with bounded Monge–Ampère mass, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003) no. 4, pp. 305-308
[9] Multiplicities and log canonical threshold, J. Algeb. Geom., Volume 13 (2004) no. 3, pp. 603-615
[10] Monge–Ampère operators, Lelong numbers and intersection theory (V. Ancona; A. Silva, eds.), Complex Analysis and Geometry, Univ. Ser. Math., Plenum Press, New York, 1993, pp. 115-193
[11] Estimates on Monge–Ampère operators derived from a local algebra inequality, 2006 (M. Passare, ed.), Uppsala University, Uppsala, Sweden (2009), pp. 131-143
[12] A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014) no. 1, pp. 1-9
[13] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Super. (4), Volume 34 (2001) no. 4, pp. 525-556
[14] Valuative analysis of planar plurisubharmonic functions, Invent. Math., Volume 162 (2005), pp. 271-311
[15] Valuations and multiplier ideals, J. Amer. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684
[16] A comparison principle for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 441-443
[17] Attenuating the singularities of plurisubharmonic functions, Ann. Pol. Math., Volume LX.2 (1994), pp. 173-197
[18] On multiplicities of graded sequences of ideals, J. Algebra, Volume 256 (2002) no. 1, pp. 229-249
[19] Newton numbers and residual measures of plurisubharmonic functions, Ann. Pol. Math., Volume 75 (2000) no. 3, pp. 213-231
[20] Relative types and extremal problems for plurisubharmonic functions, Int. Math. Res. Not. (2006) (26 p., Art. ID 76283)
[21] Multi-circled singularities, Lelong numbers, and integrability index, J. Geom. Anal., Volume 23 (2013) no. 4, pp. 1976-1992
[22] Sous-ensembles analytiques d'ordre fini ou infini dans , Bull. Soc. Math. Fr., Volume 100 (1972), pp. 353-408
[23] Spaces of analytic functions and maximal plurisubharmonic functions, 1984 (D.Sci. dissertation, Rostov-on-Don, USSR)
[24] Appendix: a stronger version of Demailly's estimate on Monge–Ampère operators, 2006 (M. Passare, ed.), Uppsala University, Uppsala, Sweden (2009), pp. 144-146
Cité par Sources :
Commentaires - Politique