In this paper, we give a description of Deligne's periods for a tensor product of pure motives over in terms of the period invariants attached to M and by Yoshida [8]. The period relations proved by the author and Raghuram in an earlier paper follow from the results of this paper.
Nous décrivons dans cette Note les périodes de Deligne des produits tensoriels de motifs purs sur , en termes des périodes des motifs M et et des invariants qui leur sont attachés par Yoshida. Les relations de périodes établies antérieurement par l'auteur et Raghuram résultent de cette description.
Accepted:
Published online:
Chandrasheel Bhagwat 1
@article{CRMATH_2015__353_3_191_0, author = {Chandrasheel Bhagwat}, title = {On {Deligne's} periods for tensor product motives}, journal = {Comptes Rendus. Math\'ematique}, pages = {191--195}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2014.11.016}, language = {en}, }
Chandrasheel Bhagwat. On Deligne's periods for tensor product motives. Comptes Rendus. Mathématique, Volume 353 (2015) no. 3, pp. 191-195. doi : 10.1016/j.crma.2014.11.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.11.016/
[1] Ratios of periods for tensor product motives, Math. Res. Lett., Volume 20 (2013) no. 4, pp. 615-628
[2] Motifs et formes automorphes: applications du principe de fonctorialité, Ann Arbor, MI, 1988 (L. Clozel; J.S. Milne, eds.) (Perspect. Math.), Volume vol. 10, Academic Press, Boston, MA (1990), pp. 77-159
[3] Valeurs de fonctions L et périodes d'intégrales, Proc. Sympos. Pure Math., vol. XXXIII, part II, American Mathematical Society, Providence, RI, USA, 1979, pp. 313-346 (With an appendix by N. Koblitz and A. Ogus)
[4] Whittaker periods, motivic periods, and special values of tensor product L-functions (Preprint, 2013, available at) | arXiv
[5] On the special values of certain Rankin–Selberg L-functions and applications to odd symmetric power L-functions of modular forms, Int. Math. Res. Not. (2010), pp. 334-372 | DOI
[6] A. Raghuram, Critical values of Rankin–Selberg L-functions for and the symmetric cube L-functions for GL2, Preprint, 2014.
[7] On certain period relations for cusp forms on , Int. Math. Res. Not. (2008) | DOI
[8] Motives and Siegel modular forms, Amer. J. Math., Volume 123 (2001), pp. 1171-1197
Cited by Sources:
Comments - Policy