Comptes Rendus
Lie algebras
On the structure and arithmeticity of lattice envelopes
Comptes Rendus. Mathématique, Volume 353 (2015) no. 5, pp. 409-413.

We announce results about the structure and arithmeticity of all possible lattice embeddings of a class of countable groups that encompasses all linear groups with simple Zariski closure, all groups with non-vanishing first 2-Betti number, non-elementary acylindrically hyperbolic groups, and non-elementary convergence groups.

Nous nous intéressons à l'ensemble des plongements possibles d'un groupe dénombrable comme réseau dans un groupe localement compact. Pour une grande classe de groupes dénombrables, nous annonçons des résultats de structure et d'arithméticité de tels plongements. Cette classe contient tous les groupes linéaires dont l'adhérence de Zariski est simple, les groupes dont le premier nombre de Betti 2 est non nul, les groupes hyperboliques acylindriques et les groupes de convergence.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.02.010

Uri Bader 1; Alex Furman 2; Roman Sauer 3

1 Technion, Haifa, Israel
2 University of Illinois at Chicago, Chicago, USA
3 Karlsruhe Institute of Technology, Karlsruhe, Germany
@article{CRMATH_2015__353_5_409_0,
     author = {Uri Bader and Alex Furman and Roman Sauer},
     title = {On the structure and arithmeticity of lattice envelopes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {409--413},
     publisher = {Elsevier},
     volume = {353},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crma.2015.02.010},
     language = {en},
}
TY  - JOUR
AU  - Uri Bader
AU  - Alex Furman
AU  - Roman Sauer
TI  - On the structure and arithmeticity of lattice envelopes
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 409
EP  - 413
VL  - 353
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2015.02.010
LA  - en
ID  - CRMATH_2015__353_5_409_0
ER  - 
%0 Journal Article
%A Uri Bader
%A Alex Furman
%A Roman Sauer
%T On the structure and arithmeticity of lattice envelopes
%J Comptes Rendus. Mathématique
%D 2015
%P 409-413
%V 353
%N 5
%I Elsevier
%R 10.1016/j.crma.2015.02.010
%G en
%F CRMATH_2015__353_5_409_0
Uri Bader; Alex Furman; Roman Sauer. On the structure and arithmeticity of lattice envelopes. Comptes Rendus. Mathématique, Volume 353 (2015) no. 5, pp. 409-413. doi : 10.1016/j.crma.2015.02.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.02.010/

[1] U. Bader, A. Furman, R. Sauer, Lattice envelopes, preprint, 2014.

[2] M. Burger; N. Monod Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002) no. 2, pp. 219-280

[3] M. Burger; S. Mozes Groups acting on trees: from local to global structure, Publ. Math. IHÉS (2001) no. 92, pp. 113-150 (2000)

[4] P.-E. Caprace; N. Monod Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol., Volume 2 (2009) no. 4, pp. 701-746

[5] A. Furman Mostow–Margulis rigidity with locally compact targets, Geom. Funct. Anal., Volume 11 (2001) no. 1, pp. 30-59

[6] B. Kleiner; B. Leeb Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math. IHÉS (1998) no. 86, pp. 115-197 (1997)

[7] D. Kyed, H. Densing Petersen, S. Vaes, L2-Betti numbers of locally compact groups and their cross section equivalence relations. ArXiv e-prints, Feb. 2013.

[8] L. Mosher; M. Sageev; K. Whyte Quasi-actions on trees. I. Bounded valence, Ann. Math. (2), Volume 158 (2003) no. 1, pp. 115-164

[9] H.D. Petersen L2-Betti numbers of locally compact groups, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 9–10, pp. 339-342

[10] K. Wortman Quasi-isometries of rank one S-arithmetic lattices, Groups Geom. Dyn., Volume 5 (2011) no. 4, pp. 787-803

Cited by Sources:

This project was supported in part by ERC grant 306706 (U.B.), BSF grant 2008267 (U.B. and A.F.), and NSF grant DMS 1207803 (A.F.).

Comments - Policy