Comptes Rendus
Homological algebra/Topology
Two functions on Sp(g,R)
Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 477-481.

We consider two functions on Sp(g,R) with values in the cyclic group of order four {±1,±i}. One was defined by Lion and Vergne. The other is −i raised to the power given by an integer valued function defined by Masbaum and the author (initially on the mapping class group of a surface). We identify these functions when restricted to Sp(g,Z). We conjecture the identity of these functions on Sp(g,R).

Nous considérons deux fonctions sur Sp(g,R) à valeurs dans le groupe cyclique d'ordre quatre {±1,±i}. L'une a été définie par Lion et Vergne. L'autre est −i élevé à la puissance donnée par une fonction à valeurs entières définie par Masbaum et l'auteur (initialement sur le groupe modulaire d'une surface). Nous montrons que ces deux fonctions coïncident sur Sp(g,Z). Nous conjecturons qu'elles coïncident sur Sp(g,R).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.03.006

Patrick M. Gilmer 1

1 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA
@article{CRMATH_2015__353_6_477_0,
     author = {Patrick M. Gilmer},
     title = {Two functions on $ \mathrm{Sp}(g,\mathbb{R})$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {477--481},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.006},
     language = {en},
}
TY  - JOUR
AU  - Patrick M. Gilmer
TI  - Two functions on $ \mathrm{Sp}(g,\mathbb{R})$
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 477
EP  - 481
VL  - 353
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2015.03.006
LA  - en
ID  - CRMATH_2015__353_6_477_0
ER  - 
%0 Journal Article
%A Patrick M. Gilmer
%T Two functions on $ \mathrm{Sp}(g,\mathbb{R})$
%J Comptes Rendus. Mathématique
%D 2015
%P 477-481
%V 353
%N 6
%I Elsevier
%R 10.1016/j.crma.2015.03.006
%G en
%F CRMATH_2015__353_6_477_0
Patrick M. Gilmer. Two functions on $ \mathrm{Sp}(g,\mathbb{R})$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 477-481. doi : 10.1016/j.crma.2015.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.03.006/

[1] S. Cappell; R. Lee; E. Miller On the Maslov index, Commun. Pure Appl. Math., Volume 47 (1994)

[2] P. Gilmer Integrality for TQFTs, Duke Math. J., Volume 125 (2004), pp. 389-413

[3] P. Gilmer; G. Masbaum Maslov index, Lagrangians, mapping class groups and TQFT, Forum Math., Volume 25 (2013) no. 5, pp. 1067-1106

[4] G. Lion; M. Vergne The Weil Representation, Maslov Index and Theta Series, Progress in Mathematics, vol. 6, Birkhauser, Basel, Switzerland, 1980

[5] G. Masbaum; J. Roberts On central extensions of mapping class groups, Math. Ann. (1995), pp. 131-150

[6] A. Putman The Picard group of the moduli space of curves with level structures, Duke Math. J., Volume 161 (2012), pp. 623-674

[7] V. Turaev A cocycle of the symplectic first Chern class and Maslov indices, Funkc. Anal. Prilozh., Volume 18 (1984) no. 1, pp. 43-48

[8] V. Turaev The first symplectic Chern class and Maslov indices, J. Sov. Math., Volume 37 (1987), pp. 1115-1127

[9] V. Turaev Quantum Invariants of Knots and 3-Manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 2010

[10] K. Walker On Witten's 3-manifold invariants, 1991 http://canyon23.net/math/ (Preliminary version)

[11] X. Wang Extra structures on three-dimensional cobordisms, 2013 http://etd.lsu.edu/docs/available/etd-07032013-142703// (LSU thesis)

Cited by Sources:

Comments - Policy