[Décomposition d'ondes pour la séparation de champs diffractés dans le domaine temporel]
À partir des conditions aux limites absorbantes classiques, nous proposons une méthode dans le domaine temporel pour la séparation des champs d'onde diffractés dus à des sources ou des obstacles multiples. Contrairement aux techniques antérieures, notre procédé est local en temps et en espace, déterministe, et ne dépend pas de connaissances a priori du spectre de fréquence du signal.
Starting from classical absorbing boundary conditions, we propose a method for the separation of time-dependent scattered wave fields due to multiple sources or obstacles. In contrast to previous techniques, our method is local in space and time, deterministic, and also avoids a priori assumptions on the frequency spectrum of the signal.
Accepté le :
Publié le :
Marcus J. Grote 1 ; Marie Kray 1 ; Frédéric Nataf 2, 3, 4 ; Franck Assous 5
@article{CRMATH_2015__353_6_523_0, author = {Marcus J. Grote and Marie Kray and Fr\'ed\'eric Nataf and Franck Assous}, title = {Wave splitting for time-dependent scattered field separation}, journal = {Comptes Rendus. Math\'ematique}, pages = {523--527}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.03.008}, language = {en}, }
TY - JOUR AU - Marcus J. Grote AU - Marie Kray AU - Frédéric Nataf AU - Franck Assous TI - Wave splitting for time-dependent scattered field separation JO - Comptes Rendus. Mathématique PY - 2015 SP - 523 EP - 527 VL - 353 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2015.03.008 LA - en ID - CRMATH_2015__353_6_523_0 ER -
Marcus J. Grote; Marie Kray; Frédéric Nataf; Franck Assous. Wave splitting for time-dependent scattered field separation. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 523-527. doi : 10.1016/j.crma.2015.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.03.008/
[1] On-surface radiation condition for multiple scattering of waves, Comput. Methods Appl. Mech. Eng., Volume 283 (2015), pp. 1296-1309
[2] Localization, stability, and resolution of topological derivative based imaging functionals in elasticity, SIAM J. Imaging Sci., Volume 6 (2013) no. 4, pp. 2174-2212
[3] Radiation boundary conditions for wave-like equations, Commun. Pure Appl. Math., Volume 33 (1980) no. 6, pp. 707-725
[4] On source analysis by wave splitting with applications in inverse scattering of multiple obstacles, J. Comput. Math., Volume 25 (2007) no. 3, pp. 266-281
[5] Far field splitting for the Helmholtz equation, SIAM J. Numer. Anal., Volume 52 (2014) no. 1, pp. 343-362
[6] Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., Volume 201 (2004) no. 2, pp. 630-650
[7] Nonreflecting boundary condition for time-dependent multiple scattering, J. Comput. Phys., Volume 221 (2007) no. 1, pp. 41-67
[8] Local nonreflecting boundary condition for time-dependent multiple scattering, J. Comput. Phys., Volume 230 (2011) no. 8, pp. 3135-3154
[9] A formulation of asymptotic and exact boundary conditions using local operators, Appl. Numer. Math., Volume 27 (1998), pp. 403-416
[10] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265
[11] Radiation boundary conditions for elastic wave propagation, SIAM J. Numer. Anal., Volume 27 (1990) no. 4, pp. 831-869
[12] Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles, Invest. Radiol., Volume 39 (2004) no. 3, pp. 187-195
[13] ‘Ultrasonic stars’ for time reversal focusing using induced cavitation bubbles, Appl. Phys. Lett., Volume 88 (2006) no. 3, p. 034102
[14] Source splitting via the point source method, Inverse Probl., Volume 26 (2010) no. 4, p. 045002
[15] On multiple scattering of waves, J. Res. Natl. Bur. Stand., Volume 64D (1960), pp. 715-730
Cité par Sources :
Commentaires - Politique