Comptes Rendus
Partial differential equations/Numerical analysis
Wave splitting for time-dependent scattered field separation
[Décomposition d'ondes pour la séparation de champs diffractés dans le domaine temporel]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 523-527.

À partir des conditions aux limites absorbantes classiques, nous proposons une méthode dans le domaine temporel pour la séparation des champs d'onde diffractés dus à des sources ou des obstacles multiples. Contrairement aux techniques antérieures, notre procédé est local en temps et en espace, déterministe, et ne dépend pas de connaissances a priori du spectre de fréquence du signal.

Starting from classical absorbing boundary conditions, we propose a method for the separation of time-dependent scattered wave fields due to multiple sources or obstacles. In contrast to previous techniques, our method is local in space and time, deterministic, and also avoids a priori assumptions on the frequency spectrum of the signal.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.03.008

Marcus J. Grote 1 ; Marie Kray 1 ; Frédéric Nataf 2, 3, 4 ; Franck Assous 5

1 Department of Mathematics and Computer Sciences, University of Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
2 CNRS, UMR 7598, Laboratoire Jacques-Louis-Lions, 75005 Paris, France
3 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis-Lions, 75005 Paris, France
4 INRIA Rocquencourt, Alpines, BP 105, 78153 Le Chesnay cedex, France
5 Department of Computer Sciences and Mathematics, Ariel University, 40700 Ariel, Israel
@article{CRMATH_2015__353_6_523_0,
     author = {Marcus J. Grote and Marie Kray and Fr\'ed\'eric Nataf and Franck Assous},
     title = {Wave splitting for time-dependent scattered field separation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {523--527},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.03.008},
     language = {en},
}
TY  - JOUR
AU  - Marcus J. Grote
AU  - Marie Kray
AU  - Frédéric Nataf
AU  - Franck Assous
TI  - Wave splitting for time-dependent scattered field separation
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 523
EP  - 527
VL  - 353
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2015.03.008
LA  - en
ID  - CRMATH_2015__353_6_523_0
ER  - 
%0 Journal Article
%A Marcus J. Grote
%A Marie Kray
%A Frédéric Nataf
%A Franck Assous
%T Wave splitting for time-dependent scattered field separation
%J Comptes Rendus. Mathématique
%D 2015
%P 523-527
%V 353
%N 6
%I Elsevier
%R 10.1016/j.crma.2015.03.008
%G en
%F CRMATH_2015__353_6_523_0
Marcus J. Grote; Marie Kray; Frédéric Nataf; Franck Assous. Wave splitting for time-dependent scattered field separation. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 523-527. doi : 10.1016/j.crma.2015.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.03.008/

[1] S. Acosta On-surface radiation condition for multiple scattering of waves, Comput. Methods Appl. Mech. Eng., Volume 283 (2015), pp. 1296-1309

[2] H. Ammari; E. Bretin; J. Garnier; W. Jing; H. Kang; A. Wahab Localization, stability, and resolution of topological derivative based imaging functionals in elasticity, SIAM J. Imaging Sci., Volume 6 (2013) no. 4, pp. 2174-2212

[3] A. Bayliss; E. Turkel Radiation boundary conditions for wave-like equations, Commun. Pure Appl. Math., Volume 33 (1980) no. 6, pp. 707-725

[4] F. Ben Hassen; J. Liu; R. Potthast On source analysis by wave splitting with applications in inverse scattering of multiple obstacles, J. Comput. Math., Volume 25 (2007) no. 3, pp. 266-281

[5] R. Griesmaier; M. Hanke; J. Sylvester Far field splitting for the Helmholtz equation, SIAM J. Numer. Anal., Volume 52 (2014) no. 1, pp. 343-362

[6] M.J. Grote; C. Kirsch Dirichlet-to-Neumann boundary conditions for multiple scattering problems, J. Comput. Phys., Volume 201 (2004) no. 2, pp. 630-650

[7] M.J. Grote; C. Kirsch Nonreflecting boundary condition for time-dependent multiple scattering, J. Comput. Phys., Volume 221 (2007) no. 1, pp. 41-67

[8] M.J. Grote; I. Sim Local nonreflecting boundary condition for time-dependent multiple scattering, J. Comput. Phys., Volume 230 (2011) no. 8, pp. 3135-3154

[9] T. Hagstrom; S.I. Hariharan A formulation of asymptotic and exact boundary conditions using local operators, Appl. Numer. Math., Volume 27 (1998), pp. 403-416

[10] F. Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265

[11] R.L. Higdon Radiation boundary conditions for elastic wave propagation, SIAM J. Numer. Anal., Volume 27 (1990) no. 4, pp. 831-869

[12] A.L. Klibanov; P.T. Rasche; M.S. Hughes; J.K. Wojdyla; K.P. Galen; J.H.J. Wible; G.H. Brandenburger Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles, Invest. Radiol., Volume 39 (2004) no. 3, pp. 187-195

[13] M. Pernot; G. Montaldo; M. Tanter; M. Fink ‘Ultrasonic stars’ for time reversal focusing using induced cavitation bubbles, Appl. Phys. Lett., Volume 88 (2006) no. 3, p. 034102

[14] R. Potthast; F.M. Fazi; P.A. Nelson Source splitting via the point source method, Inverse Probl., Volume 26 (2010) no. 4, p. 045002

[15] V. Twersky On multiple scattering of waves, J. Res. Natl. Bur. Stand., Volume 64D (1960), pp. 715-730

Cité par Sources :

Commentaires - Politique