Comptes Rendus
Partial differential equations/Harmonic analysis
Fractional Laplacians, extension problems and Lie groups
Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 517-522.

We generalize some results concerning the fractional powers of the Laplace operator to the setting of nilpotent Lie Groups and we study its relationship with the solutions to a partial differential equation in the spirit of the articles of Caffarelli & Silvestre [1] and Stinga & Torrea [7].

Nous généralisons aux groupes de Lie nilpotents les travaux de Caffarelli & Silvestre [1] et Stinga & Torrea [7] concernant la relation existant entre les puissances fractionnaires de l'opérateur laplacien et les solutions d'une équation aux dérivées partielles.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.04.007

Diego Chamorro 1; Oscar Jarrín 1

1 Laboratoire de mathématiques et modélisation d'Évry (LaMME), UMR 8071, Université d'Évry-Val-d'Essonne, 23, boulevard de France, 91037 Évry cedex, France
@article{CRMATH_2015__353_6_517_0,
     author = {Diego Chamorro and Oscar Jarr{\'\i}n},
     title = {Fractional {Laplacians,} extension problems and {Lie} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {517--522},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.007},
     language = {en},
}
TY  - JOUR
AU  - Diego Chamorro
AU  - Oscar Jarrín
TI  - Fractional Laplacians, extension problems and Lie groups
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 517
EP  - 522
VL  - 353
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2015.04.007
LA  - en
ID  - CRMATH_2015__353_6_517_0
ER  - 
%0 Journal Article
%A Diego Chamorro
%A Oscar Jarrín
%T Fractional Laplacians, extension problems and Lie groups
%J Comptes Rendus. Mathématique
%D 2015
%P 517-522
%V 353
%N 6
%I Elsevier
%R 10.1016/j.crma.2015.04.007
%G en
%F CRMATH_2015__353_6_517_0
Diego Chamorro; Oscar Jarrín. Fractional Laplacians, extension problems and Lie groups. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 517-522. doi : 10.1016/j.crma.2015.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.007/

[1] L. Caffarelli; L. Silvestre An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1245-1260

[2] F. Ferrari; B. Franchi Hanarck inequality for fractional sub-Laplacians in Carnot groups, Math. Z., Volume 279 (2015), pp. 435-458

[3] R. Frank; M.D.M. González; D.D. Monticelli; J. Tan An extension problem for the CR fractional Laplacian, Adv. Math., Volume 270 (2015), pp. 97-137

[4] G. Furioli; C. Melzi; A. Veneruso Littlewood–Paley decomposition and Besov spaces on Lie groups of polynomial growth, Math. Nachr., Volume 279 (2006) no. 9–10, pp. 1028-1040

[5] J.E. Galé; P.J. Miana; P.R. Stinga Extension problems and fractional operators: semi-groups and wave equations | arXiv

[6] M. Kemmppainen; S. Sjögren; J.L. Torrea Wave extension problem for the fractional Laplacian, J. Evol. Equ., Volume 2 (2014), pp. 343-368

[7] P. Stinga; J. Torrea Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., Volume 35 (2010) no. 11, pp. 2092-2122

[8] N.T. Varopoulos; L. Saloff-Coste; T. Coulhon Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100, 1992

Cited by Sources:

Comments - Policy