Accepted:
Published online:
Diego Chamorro 1; Oscar Jarrín 1
@article{CRMATH_2015__353_6_517_0, author = {Diego Chamorro and Oscar Jarr{\'\i}n}, title = {Fractional {Laplacians,} extension problems and {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {517--522}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.04.007}, language = {en}, }
Diego Chamorro; Oscar Jarrín. Fractional Laplacians, extension problems and Lie groups. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 517-522. doi : 10.1016/j.crma.2015.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.007/
[1] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1245-1260
[2] Hanarck inequality for fractional sub-Laplacians in Carnot groups, Math. Z., Volume 279 (2015), pp. 435-458
[3] An extension problem for the CR fractional Laplacian, Adv. Math., Volume 270 (2015), pp. 97-137
[4] Littlewood–Paley decomposition and Besov spaces on Lie groups of polynomial growth, Math. Nachr., Volume 279 (2006) no. 9–10, pp. 1028-1040
[5] Extension problems and fractional operators: semi-groups and wave equations | arXiv
[6] Wave extension problem for the fractional Laplacian, J. Evol. Equ., Volume 2 (2014), pp. 343-368
[7] Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., Volume 35 (2010) no. 11, pp. 2092-2122
[8] Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100, 1992
Cited by Sources:
Comments - Policy