Comptes Rendus
Complex analysis/Functional analysis
On holomorphic domination, II
[Sur la majoration holomorphe, II]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 501-503.

Étant donnée une fonction localement bornée u:ΩR sur un ouvert pseudoconvexe Ω dans un espace de Banach séparable jouissant de la propriété d'approximation bornée, on montre ici qu'il y a une majoration de la forme u(x)<h(x) pour xΩ, où h:ΩZ est une fonction holomorphe convenable à valeurs dans un espace de Banach convenable Z. Une majoration holomorphe comme celle ci-dessus est une propriété de convexité holomorphe qui joue un rôle profitable en analyse complexe sur des variétés de Banach.

Let X be a separable Banach space with the bounded approximation property, ΩX pseudoconvex open, and u:ΩR locally upper bounded. We show that there are a Banach space Z and a holomorphic function h:ΩZ with u(x)<h(x) for xΩ.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.04.001

Imre Patyi 1

1 Department of Mathematics, Mail Stop 561, East Carolina University, 1000 E 5th St, Greenville, NC 27858-4353, USA
@article{CRMATH_2015__353_6_501_0,
     author = {Imre Patyi},
     title = {On holomorphic domination, {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {501--503},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.001},
     language = {en},
}
TY  - JOUR
AU  - Imre Patyi
TI  - On holomorphic domination, II
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 501
EP  - 503
VL  - 353
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2015.04.001
LA  - en
ID  - CRMATH_2015__353_6_501_0
ER  - 
%0 Journal Article
%A Imre Patyi
%T On holomorphic domination, II
%J Comptes Rendus. Mathématique
%D 2015
%P 501-503
%V 353
%N 6
%I Elsevier
%R 10.1016/j.crma.2015.04.001
%G en
%F CRMATH_2015__353_6_501_0
Imre Patyi. On holomorphic domination, II. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 501-503. doi : 10.1016/j.crma.2015.04.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.001/

[1] S. Dineen Bounding subsets of a Banach space, Math. Ann., Volume 192 (1971), pp. 61-70

[2] W.B. Johnson; H.P. Rosenthal; M. Zippin On bases, finite dimensional decompositions and weaker structures in Banach spaces, Isr. J. Math., Volume 9 (1971), pp. 488-506

[3] B. Josefson Bounding subsets of (A), J. Math. Pures Appl. (9), Volume 57 (1978) no. 4, pp. 397-421

[4] L. Lempert Approximation of holomorphic functions of infinitely many variables, II, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 2, pp. 423-442

[5] L. Lempert The Dolbeault complex in infinite dimensions, III, Sheaf cohomology in Banach spaces, Invent. Math., Volume 142 (2000) no. 3, pp. 579-603

[6] L. Lempert Plurisubharmonic domination, J. Amer. Math. Soc., Volume 17 (2004), pp. 361-372

[7] L. Lempert Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math., Volume 8 (2004), pp. 65-85

[8] L. Lempert; I. Patyi Analytic sheaves in Banach spaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 40 (2007), pp. 453-486

[9] I. Patyi On holomorphic Banach vector bundles over Banach spaces, Math. Ann., Volume 341 (2008) no. 2, pp. 455-482

[10] I. Patyi On holomorphic domination, I, Bull. Sci. Math., Volume 135 (2011), pp. 303-311

[11] I. Patyi Plurisubharmonic domination in Banach spaces, Adv. Math., Volume 227 (2011), pp. 245-252

[12] I. Patyi On complex Banach manifolds similar to Stein manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 43-45

[13] A. Pełczyński Projections in certain Banach spaces, Stud. Math., Volume 19 (1960), pp. 209-228

Cité par Sources :

Commentaires - Politique