[Les mesures positives appartenantes à
En vue d'applications en mécanique des fluides, on démontre qu'une mesure positive de Radon à support compact appartient à l'espace négatif de Sobolev
Motivated by applications in fluid dynamics, we show elementarily that a nonnegative compactly supported Radon measure μ belongs to the negative Sobolev space
Accepté le :
Publié le :
Grzegorz Jamróz 1
@article{CRMATH_2015__353_6_529_0, author = {Grzegorz Jamr\'oz}, title = {Nonnegative measures belonging to $ {H}^{-1}({\mathbb{R}}^{2})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.04.010}, language = {en}, }
Grzegorz Jamróz. Nonnegative measures belonging to $ {H}^{-1}({\mathbb{R}}^{2})$. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 529-534. doi : 10.1016/j.crma.2015.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.04.010/
[1] Sobolev Spaces, Academic Press, 2003
[2] The Lebesgue–Stieltjes Integral. A Practical Introduction, Springer-Verlag, New York, 2000
[3] Weak solutions of 2-D Euler incompressible Euler equations, Nonlinear Anal. TMA, Volume 23 (1994), pp. 629-638
[4] A theorem on measures in dimension 2 and applications to vortex sheets, J. Funct. Anal., Volume 266 (2014), pp. 6780-6795
[5] Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., Volume 4 (1991), pp. 553-586
[6] Concentrations in regularizations for 2-D incompressible flow, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 301-345
[7] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, USA, 1992
[8] Integrals associated with the Cantor staircase, St. Petersburg Math. J., Volume 15 (2006) no. 3, pp. 449-468
[9] Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data, Commun. Pure Appl. Math., Volume 48 (1995) no. 6, pp. 611-628
[10] Numerical evidence of nonuniqueness in the evolution of vortex sheets, ESAIM: Math. Model. Numer. Anal., Volume 40 (2006) no. 2, pp. 225-237
[11] Approximate solutions of the incompressible Euler equations with no concentrations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 3, pp. 371-412
[12] Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 921-939
[13] The point-vortex method for periodic weak solutions of the 2D Euler equations, Commun. Pure Appl. Math., Volume 49 (1996), pp. 911-965
[14] On a new scale of regularity spaces with applications to Euler's equations, Nonlinearity, Volume 14 (2001) no. 3, pp. 513-532
[15] An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer/UMI, Berlin/Bologna, 2007
- Hölder continuity of cumulative distribution functions for noncommutative polynomials under finite free Fisher information, Journal of Functional Analysis, Volume 279 (2020) no. 8, p. 108710 | DOI:10.1016/j.jfa.2020.108710
- Kinetic Energy Represented in Terms of Moments of Vorticity and Applications, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 4 | DOI:10.1007/s00021-019-0456-z
Cité par 2 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier