Comptes Rendus
Analytic geometry
A singular Demailly–Păun theorem
Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 91-95.

We give a numerical characterization of the Kähler cone of a possibly singular compact analytic variety that is embedded in a smooth ambient space.

On donne une caractérisation numérique du cône kählérien d'une variété analytique compacte qui est plongée dans un espace ambiant lisse.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.10.012

Tristan C. Collins 1; Valentino Tosatti 2

1 Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, United States
2 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, United States
@article{CRMATH_2016__354_1_91_0,
     author = {Tristan C. Collins and Valentino Tosatti},
     title = {A singular {Demailly{\textendash}P\u{a}un} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {91--95},
     publisher = {Elsevier},
     volume = {354},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.012},
     language = {en},
}
TY  - JOUR
AU  - Tristan C. Collins
AU  - Valentino Tosatti
TI  - A singular Demailly–Păun theorem
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 91
EP  - 95
VL  - 354
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.012
LA  - en
ID  - CRMATH_2016__354_1_91_0
ER  - 
%0 Journal Article
%A Tristan C. Collins
%A Valentino Tosatti
%T A singular Demailly–Păun theorem
%J Comptes Rendus. Mathématique
%D 2016
%P 91-95
%V 354
%N 1
%I Elsevier
%R 10.1016/j.crma.2015.10.012
%G en
%F CRMATH_2016__354_1_91_0
Tristan C. Collins; Valentino Tosatti. A singular Demailly–Păun theorem. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 91-95. doi : 10.1016/j.crma.2015.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.012/

[1] F. Campana; T. Peternell Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math., Volume 407 (1990), pp. 160-166

[2] I. Chiose The Kähler rank of compact complex manifolds, J. Geom. Anal. (2015) (in press) | DOI

[3] T. Collins; V. Tosatti Kähler currents and null loci, Invent. Math., Volume 202 (2015) no. 3, pp. 1167-1198

[4] R.J. Conlon; H.-J. Hein Asymptotically conical Calabi–Yau manifolds, I, Duke Math. J., Volume 162 (2013) no. 15, pp. 2855-2902

[5] R.J. Conlon; H.-J. Hein Asymptotically conical Calabi–Yau manifolds, III (preprint) | arXiv

[6] J.-P. Demailly, Complex analytic and differential geometry, available on the author's webpage.

[7] J.-P. Demailly; M. Păun Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1247-1274

[8] S.L. Kleiman Toward a numerical theory of ampleness, Ann. of Math. (2), Volume 84 (1966), pp. 293-344

[9] M. Păun Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann., Volume 310 (1998) no. 3, pp. 411-421

[10] R. Richberg Stetige streng pseudokonvexe Funktionen, Math. Ann., Volume 175 (1968), pp. 257-286

[11] P.A.N. Smith Smoothing plurisubharmonic functions on complex spaces, Math. Ann., Volume 273 (1986) no. 3, pp. 397-413

[12] J. Varouchas Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989) no. 1, pp. 13-52

Cited by Sources:

Comments - Policy