We give a numerical characterization of the Kähler cone of a possibly singular compact analytic variety that is embedded in a smooth ambient space.
On donne une caractérisation numérique du cône kählérien d'une variété analytique compacte qui est plongée dans un espace ambiant lisse.
Accepted:
Published online:
Tristan C. Collins 1; Valentino Tosatti 2
@article{CRMATH_2016__354_1_91_0, author = {Tristan C. Collins and Valentino Tosatti}, title = {A singular {Demailly{\textendash}P\u{a}un} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {91--95}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.012}, language = {en}, }
Tristan C. Collins; Valentino Tosatti. A singular Demailly–Păun theorem. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 91-95. doi : 10.1016/j.crma.2015.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.012/
[1] Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math., Volume 407 (1990), pp. 160-166
[2] The Kähler rank of compact complex manifolds, J. Geom. Anal. (2015) (in press) | DOI
[3] Kähler currents and null loci, Invent. Math., Volume 202 (2015) no. 3, pp. 1167-1198
[4] Asymptotically conical Calabi–Yau manifolds, I, Duke Math. J., Volume 162 (2013) no. 15, pp. 2855-2902
[5] Asymptotically conical Calabi–Yau manifolds, III (preprint) | arXiv
[6] J.-P. Demailly, Complex analytic and differential geometry, available on the author's webpage.
[7] Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1247-1274
[8] Toward a numerical theory of ampleness, Ann. of Math. (2), Volume 84 (1966), pp. 293-344
[9] Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann., Volume 310 (1998) no. 3, pp. 411-421
[10] Stetige streng pseudokonvexe Funktionen, Math. Ann., Volume 175 (1968), pp. 257-286
[11] Smoothing plurisubharmonic functions on complex spaces, Math. Ann., Volume 273 (1986) no. 3, pp. 397-413
[12] Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989) no. 1, pp. 13-52
Cited by Sources:
Comments - Policy