Comptes Rendus
Functional analysis
Homogeneous Hermitian holomorphic vector bundles and the Cowen–Douglas class over bounded symmetric domains
[Fibrés vectoriels homogènes holomorphes hermitiens et classe de Cowen–Douglas sur des domaines bornés symétriques]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 291-295.

Il est bien connu que les fibrés vectoriels homogènes holomorphes hermitiens peuvent être obtenus par induction holomorphe à partir des representations de dimension finie d'un certain groupe parabolique. Les représentations, ainsi que les fibrés induits, ont des séries de composition à quotients irréductibles. On montre qu'il existe un opérateur différentiel invariant à coefficients constants qui entrelace le fibré et la somme directe de ses quotients irréductibles. Comme application, on montre que tous les n-tuples d'opérateurs homogènes de la classe de Cowen–Douglas associés à la boule dans Cn sont similaires à des sommes directes de certains n-tuples fondamentaux.

It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic group on finite-dimensional inner product spaces. The representations, and the induced bundles, have composition series with irreducible factors. We write down an equivariant constant coefficient differential operator that intertwines the bundle with the direct sum of its irreducible factors. As an application, we show that in the case of the closed unit ball in Cn all homogeneous n-tuples of Cowen–Douglas operators are similar to direct sums of certain basic n-tuples.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.11.002

Adam Korányi 1 ; Gadadhar Misra 2

1 Lehman College, Bronx, NY 10468, USA
2 Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
@article{CRMATH_2016__354_3_291_0,
     author = {Adam Kor\'anyi and Gadadhar Misra},
     title = {Homogeneous {Hermitian} holomorphic vector bundles and the {Cowen{\textendash}Douglas} class over bounded symmetric domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {291--295},
     publisher = {Elsevier},
     volume = {354},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crma.2015.11.002},
     language = {en},
}
TY  - JOUR
AU  - Adam Korányi
AU  - Gadadhar Misra
TI  - Homogeneous Hermitian holomorphic vector bundles and the Cowen–Douglas class over bounded symmetric domains
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 291
EP  - 295
VL  - 354
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2015.11.002
LA  - en
ID  - CRMATH_2016__354_3_291_0
ER  - 
%0 Journal Article
%A Adam Korányi
%A Gadadhar Misra
%T Homogeneous Hermitian holomorphic vector bundles and the Cowen–Douglas class over bounded symmetric domains
%J Comptes Rendus. Mathématique
%D 2016
%P 291-295
%V 354
%N 3
%I Elsevier
%R 10.1016/j.crma.2015.11.002
%G en
%F CRMATH_2016__354_3_291_0
Adam Korányi; Gadadhar Misra. Homogeneous Hermitian holomorphic vector bundles and the Cowen–Douglas class over bounded symmetric domains. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 291-295. doi : 10.1016/j.crma.2015.11.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.002/

[1] R.A. Herb; J.A. Wolf Wave packets for the relative discrete series. I. The holomorphic case, J. Funct. Anal., Volume 73 (1987), pp. 1-37

[2] H.P. Jakobsen The last possible place of unitarity for certain highest weight modules, Math. Ann., Volume 256 (1981), pp. 439-447

[3] A. Korányi; G. Misra A classification of homogeneous operators in the Cowen–Douglas class, Adv. Math., Volume 226 (2011), pp. 5338-5360

[4] I. Satake Algebraic Structures of Symmetric Domains, Princeton University Press, Princeton, NJ, USA, 1980

Cité par Sources :

This research was supported, in part, by a DST–NSF S&T Cooperation Program. The second author also acknowledges the support he has received through the J.C. Bose National Fellowship of the Department of Science and Technology and the University Grants Commission Centre for Advanced Studies.

Commentaires - Politique