Following [1,2], we know that semi-regular sub-varieties satisfy the variational Hodge conjecture, i.e., given a family of smooth projective varieties , a special fiber and a semi-regular subvariety , the cohomology class corresponding to Z remains a Hodge class (as deforms along B) if and only if Z remains an algebraic cycle. In this article, we investigate examples of such sub-varieties. In particular, we prove that any smooth projective variety Z of dimension n is a semi-regular sub-variety of a smooth projective hypersurface in of large enough degree.
D'après [1,2] nous savons que les sous-variétés semi-régulières satisfont la conjecture de Hodge variationnelle, c'est-à-dire qu'étant données une famille de variétés projectives lisses , une fibre spéciale et une sous-variété semi-régulière , la classe de cohomologie correspondant à Z reste une classe de Hodge si et seulement si Z reste un cycle algébrique (lorsque se déforme le long de B). Nous étudions ici des exemples de telles sous-variétés. En particulier, nous montrons que toute variété projective lisse Z de dimension n est une sous-variété semi-régulière d'une hypersurface projective lisse de de degré suffisamment grand.
Accepted:
Published online:
Ananyo Dan 1; Inder Kaur 2
@article{CRMATH_2016__354_3_297_0, author = {Ananyo Dan and Inder Kaur}, title = {Semi-regular varieties and variational {Hodge} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--300}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2016.01.005}, language = {en}, }
Ananyo Dan; Inder Kaur. Semi-regular varieties and variational Hodge conjecture. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 297-300. doi : 10.1016/j.crma.2016.01.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.005/
[1] Semi-regularity and de-Rham cohomology, Invent. Math., Volume 17 (1972), pp. 51-66
[2] A semiregularity map for modules and applications to deformations, Compos. Math., Volume 137 (2003) no. 2, pp. 135-210
[3] Bertini's theorem for hypersurface sections containing a subscheme, Commun. Algebra, Volume 7 (1979) no. 8, pp. 775-790
[4] A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math., Volume 81 (1959) no. 2, pp. 477-500
[5] Sul teorema fondamentale dei sistemi continui di curve sopra una superficie algebrica, Ann. Mat. Pura Appl., Volume 23 (1944) no. 4, pp. 149-181
Cited by Sources:
Comments - Policy