Nous considérons le modèle du tas de sable sur l'ensemble des points entiers d'un polygone entier. En ajoutant des grains de sable en certains points, on obtient une perturbation mineure de la configuration stable maximale . Le résultat de la relaxation est presque partout égal à μ. On appelle lieu de déviation l'ensemble des points où . La limite au sens de la distance de Hausdorff du lieu de déviation est une courbe tropicale spéciale, qui passe par les points de perturbation.
We study a sandpile model on the set of the lattice points in a large lattice polygon. A small perturbation ψ of the maximal stable state is obtained by adding extra grains at several points. It appears that the result of the relaxation of ψ coincides with μ almost everywhere; the set where is called the deviation locus. The scaling limit of the deviation locus turns out to be a distinguished tropical curve passing through the perturbation points.
Accepté le :
Publié le :
Nikita Kalinin 1 ; Mikhail Shkolnikov 1
@article{CRMATH_2016__354_2_125_0, author = {Nikita Kalinin and Mikhail Shkolnikov}, title = {Tropical curves in sandpiles}, journal = {Comptes Rendus. Math\'ematique}, pages = {125--130}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.11.003}, language = {en}, }
Nikita Kalinin; Mikhail Shkolnikov. Tropical curves in sandpiles. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 125-130. doi : 10.1016/j.crma.2015.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.11.003/
[1] Self-organized criticality: an explanation of the 1/f noise, Phys. Rev. Lett., Volume 59 (1987) no. 4, p. 381
[2] Brief introduction to tropical geometry, Proceedings of 21st Gökova Geometry-Topology Conference, 2015
[3] Conservation laws for strings in the Abelian sandpile model, Europhys. Lett., Volume 90 (2010) no. 6, p. 60003
[4] Multiple and inverse topplings in the Abelian sandpile model, Eur. Phys. J. Spec. Top., Volume 212 (2012) no. 1, pp. 23-44
[5] Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., Volume 64 (1990) no. 14, pp. 1613-1616
[6] Growth rates and explosions in sandpiles, J. Stat. Phys., Volume 138 (2010) no. 1–3, pp. 143-159
[7] Tropical curves in sandpile models, 2015 (in preparation) | arXiv
[8] On the identity of the sandpile group, Discrete Math., Volume 256 (2002) no. 3, pp. 775-790 LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC)
[9] Apollonian structure in the Abelian sandpile, Geom. Funct. Anal. (2012) (in press) | arXiv
[10] What is a sandpile?, Not. Amer. Math. Soc. (2010)
[11] Enumerative tropical algebraic geometry in , J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 313-377
[12] Deterministic Abelian sandpile models and patterns, Springer Theses, Springer, Cham, 2014 (PhD Thesis, University of Pisa, Pisa, 2012)
[13] Convergence of the Abelian sandpile, Duke Math. J., Volume 162 (2013) no. 4, pp. 627-642
[14] Pattern formation in fast-growing sandpiles, Phys. Rev. E, Volume 85 (2012) no. 2
[15] The number of vertices of a tropical curve is bounded by its area, Enseign. Math., Volume 60 (2014) no. 3–4, pp. 257-271
Cité par Sources :
☆ Research is supported in part the grant 159240 of the Swiss National Science Foundation as well as by the National Center of Competence in Research SwissMAP of the Swiss National Science Foundation.
Commentaires - Politique