[Symétries des solutions d'équations impliquant des opérateurs d'ordre zéro]
In this note, we study symmetry results of solutions to equation (E)
Soit
Accepté le :
Publié le :
Disson dos Prazeres 1 ; Ying Wang 2
@article{CRMATH_2016__354_3_277_0, author = {Disson dos Prazeres and Ying Wang}, title = {Symmetry results for solutions of equations involving zero-order operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {277--281}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.12.013}, language = {en}, }
Disson dos Prazeres; Ying Wang. Symmetry results for solutions of equations involving zero-order operators. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 277-281. doi : 10.1016/j.crma.2015.12.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.013/
[1] A characteristic property of spheres, Ann. Mat. Pura Appl., Volume 58 (1962) no. 1, pp. 303-315
[2] On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., Volume 22 (1991) no. 1
[3] Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., Volume 16 (2014) no. 1
[4] Uniform equicontinuity for a family of zero order operators approaching the fractional Laplacian, Commun. Partial Differ. Equ., Volume 40 (2015), pp. 1591-1618
[5] Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209-243
[6] Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 111-157
[7] A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 304-318
Cité par Sources :
Commentaires - Politique