In this note, we study symmetry results of solutions to equation (E) in with the condition in , where , with and , is a zero-order nonlocal operator, which approaches the fractional Laplacian when . The function f is locally Lipschitz continuous. We analyzed that the symmetry properties of solutions depend on the Lipschitz constant of f. When the Lipschitz constant is controlled by , any solution of (E) satisfying in and on is radially symmetric.
Soit , avec et , un opérateur non local d'ordre zéro qui approche le laplacien fractionnaire lorsque ϵ tend vers 0. Nous étudions dans cette Note les symétries des solutions de l'équation (E) : dans la boule unité ouverte avec la condition sur le complémentaire de la boule unité fermée. Nous observons que les propriétés de symétrie dépendent de la constante de Lipschitz de f. Lorsque cette constante de Lipschitz est majorée par , toute solution de (E) satisfaisant dans et sur le bord est radialement symétrique.
Accepted:
Published online:
Disson dos Prazeres 1; Ying Wang 2
@article{CRMATH_2016__354_3_277_0, author = {Disson dos Prazeres and Ying Wang}, title = {Symmetry results for solutions of equations involving zero-order operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {277--281}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.12.013}, language = {en}, }
Disson dos Prazeres; Ying Wang. Symmetry results for solutions of equations involving zero-order operators. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 277-281. doi : 10.1016/j.crma.2015.12.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.013/
[1] A characteristic property of spheres, Ann. Mat. Pura Appl., Volume 58 (1962) no. 1, pp. 303-315
[2] On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., Volume 22 (1991) no. 1
[3] Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math., Volume 16 (2014) no. 1
[4] Uniform equicontinuity for a family of zero order operators approaching the fractional Laplacian, Commun. Partial Differ. Equ., Volume 40 (2015), pp. 1591-1618
[5] Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209-243
[6] Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 111-157
[7] A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 304-318
Cited by Sources:
Comments - Policy