In this note, we show that the family of all possible unions of finite consecutive cylinders of the same rank of continued fraction expansion is faithful for the Hausdorff dimension calculation on the unit interval.
Nous montrons dans cette Note que la famille de toutes les unions finies de cylindres consécutifs de même rang n (une telle union est la clôture de l'ensemble des nombres réels dans l'intervalle unité dont les premiers quotients partiels du développement en fraction continue sont fixés et le est astreint à parcourir un ensemble donné d'entiers consécutifs) est fidèle pour la dimension de Hausdorff de l'intervalle unité.
Accepted:
Published online:
Jia Liu 1; Zhenliang Zhang 2
@article{CRMATH_2016__354_9_874_0, author = {Jia Liu and Zhenliang Zhang}, title = {On the {Hausdorff} dimension faithfulness of continued fraction expansion}, journal = {Comptes Rendus. Math\'ematique}, pages = {874--878}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.07.009}, language = {en}, }
Jia Liu; Zhenliang Zhang. On the Hausdorff dimension faithfulness of continued fraction expansion. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 874-878. doi : 10.1016/j.crma.2016.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.009/
[1] Fractal properties of singularly continuous probability distributions with independent -digits, Bull. Sci. Math., Volume 129 (2005) no. 4, pp. 356-367
[2] Fractal probability distributions and transformations preserving the Hausdorff–Besicovitch dimension, Ergod. Theory Dyn. Syst., Volume 24 (2004) no. 1, pp. 1-16
[3] On the Hausdorff dimension faithfulness and the Cantor series expansion | arXiv
[4] On the fractal phenomena connected with infinite linear IFs | arXiv
[5] Ergodic Theory and Information, John Wiley and Sons, New York, 1965
[6] Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 1990
[7] On analytic (symbolic) representation of one-dimensional continuous transformations preserving the Hausdorff–Besicovitch dimension, Trans. Natl. Pedagog. Univ. Ukraine, Math., Volume 4 (2003), pp. 207-215
[8] Hausdorff Measures, Cambridge University Press, London, 1970
Cited by Sources:
Comments - Policy