This note introduces reflective tomography in a mathematical framework. The effect of the filtered backprojection on reflective-kind projections is studied: a reflective projection is defined, tomographic filtering of such a projection is analysed, and so is the filtered backprojection. The results emphasize the role of the contrasts: we get a decomposition in which the contributions of the discontinuities and of the tangential variations are enlightened.
Cette note introduit la tomographie réflective dans un cadre mathématique. Nous proposons une étude de la rétroprojection filtrée, sur des projections de type réflectif. On définit une projection réflective, le filtrage tomographique de telles données est analysé, ainsi que leur rétroprojection filtrée. Les résultats soulignent le rôle des contrastes : on obtient une décomposition dans laquelle les contributions des discontinuités et des variations tangentielles sont mises en évidence.
Accepted:
Published online:
Jean-Baptiste Bellet 1; Gérard Berginc 2
@article{CRMATH_2016__354_9_960_0, author = {Jean-Baptiste Bellet and G\'erard Berginc}, title = {Reflective filtered backprojection}, journal = {Comptes Rendus. Math\'ematique}, pages = {960--964}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.07.011}, language = {en}, }
Jean-Baptiste Bellet; Gérard Berginc. Reflective filtered backprojection. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 960-964. doi : 10.1016/j.crma.2016.07.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.011/
[1] Laser interactive 3D computer graphics, Québec, Canada (2015) | HAL
[2] Scattering models for range profiling and 2D–3D laser imagery, Proc. SPIE, Volume 9205 (2014)
[3] G. Berginc, M. Jouffroy, Optronic system and method dedicated to identification for formulating three-dimensional images, November 2009, US patent No. 20110254924 A1, European patent No. 2333481 A1, FR 09 05720 B1.
[4] Simulation of 3D laser systems, IGARSS 2009, Volume vol. 2, IEEE (2009), pp. 440-444
[5] Simulation of 3D laser imaging, PIERS Online, Volume 6 (2010) no. 5, pp. 415-419
[6] 3D laser imaging, PIERS Online, Volume 7 (2011) no. 5, pp. 411-415
[7] Cours d'analyse : théorie des distributions et analyse de Fourier, Les Éditions de l'École polytechnique, Paris, 2001
[8] Tomographic techniques applied to laser radar reflective measurements, Linc. Lab. J., Volume 2 (1989) no. 2, pp. 143-160
[9] Mathematical Methods in Image Reconstruction, SIAM, 2001
Cited by Sources:
Comments - Policy