[Inégalité de Fekete–Szegö pour certaines fonctions spiralées]
Pour , soit la classe des fonctions analytiques normalisées , non nulles dans le disque unité et satisfaisant dans , où
For , let denote the class of non-vanishing normalized analytic functions in the unit disk satisfying in where
Accepté le :
Publié le :
Allu Vasudevarao 1
@article{CRMATH_2016__354_11_1065_0, author = {Allu Vasudevarao}, title = {Fekete{\textendash}Szeg\"o inequality for certain spiral-like functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1065--1070}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.09.008}, language = {en}, }
Allu Vasudevarao. Fekete–Szegö inequality for certain spiral-like functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1065-1070. doi : 10.1016/j.crma.2016.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.008/
[1] The Fekete–Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., Volume 114 (1992) no. 2, pp. 345-349
[2] On the Fekete–Szegö problem for concave univalent functions, J. Math. Anal. Appl., Volume 373 (2011) no. 2, pp. 432-438
[3] Regular functions for which is α-spiral, Proc. Amer. Math. Soc., Volume 49 (1975), pp. 151-160
[4] A general approach to the Fekete–Szegö problem, J. Math. Soc. Jpn., Volume 59 (2007) no. 3, pp. 707-727
[5] Univalent Functions, Grundlehren Math. Wiss., vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983
[6] Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933), pp. 85-89
[7] A general coefficient theorem, Trans. Amer. Math. Soc., Volume 77 (1954), pp. 262-280
[8] On certain coefficients of univalent functions, Analytic Functions, Princeton University Press, Princeton, NJ, USA, 1960
[9] A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., Volume 20 (1969) no. 1, pp. 8-12
[10] Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. (2), Volume 49 (2006), pp. 131-143
[11] On the Fekete–Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., Volume 101 (1987), pp. 89-95
[12] On the Fekete–Szegö problem for close-to-convex functions II, Arch. Math., Volume 49 (1987), pp. 420-433
[13] Regular functions for which is α-spiral, Trans. Amer. Math. Soc., Volume 166 (1972), pp. 361-370
[14] On functions of bounded boundary rotation, Proc. Amer. Math. Soc., Volume 29 (1971) no. 2, pp. 345-348
[15] Fekete–Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., Volume 117 (1993) no. 4, pp. 947-950
[16] An internal geometric characterization of strongly star-like functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, Volume 45 (1991), pp. 89-97
[17] A unified treatment of some special classes of univalent functions (Z. Li; F. Ren; L. Yang; S. Zhang, eds.), Proceedings of the Conference on Complex Analysis, International Press Inc., 1992, pp. 157-169
[18] Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl., Volume 205 (1997), pp. 537-553
[19] The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., Volume 55 (1949), pp. 545-551
[20] Univalence of the integral of , Bull. Lond. Math. Soc., Volume 7 (1975), pp. 254-256
[21] The Fekete–Szegö inequality by a variational method, Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 10 (1985), pp. 447-454
[22] The Fekete–Szegö inequality for complex parameters, Complex Var. Theory Appl., Volume 7 (1986), pp. 149-160
[23] Region of variability of univalent functions for which is spiral-like, Houst. J. Math., Volume 34 (2008) no. 4, pp. 1037-1048
[24] Univalent functions for which is spiral-like, Mich. Math. J., Volume 16 (1969), pp. 97-101
[25] Univalent functions for which is α-spiral-like, Indian J. Pure Appl. Math., Volume 8 (1977), pp. 253-259
[26] Contribution à la théorie des fonctions univalentes, Čas. Pěst. Math. Fys., Volume 62 (1933), pp. 12-19
[27] An arclength problem for some subclasses of univalent functions, J. Anal., Volume 22 (2014), pp. 145-149 (in Czech)
[28] Fekete–Szego problem for certain subclasses of univalent functions, Bull. Korean Math. Soc., Volume 52 (2015) no. 6, pp. 1937-1943
Cité par Sources :
Commentaires - Politique