Comptes Rendus
Complex analysis
Fekete–Szegö inequality for certain spiral-like functions
[Inégalité de Fekete–Szegö pour certaines fonctions spiralées]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1065-1070.

Pour |α|<π/2, soit Sα la classe des fonctions analytiques normalisées f(z)=z+n=2anzn, non nulles dans le disque unité D:={zC;|z|<1} et satisfaisant RePf(z)>0 dans D, où

Pf(z)=eiα(1+zf(z)f(z)).
Pour f(z)Sα, la fonction zf(z) est spiralée, notion introduite et étudiée de façon approfondie par M.S. Robertson [24]. Dans la présente Note, nous obtenons une borne supérieure précise de la fonctionnelle de Fekete–Szegö |a3λa22|, où λ est un paramètre complexe et fSα.

For |α|<π/2, let Sα denote the class of non-vanishing normalized analytic functions f(z)=z+n=2anzn in the unit disk D:={zC:|z|<1} satisfying RePf(z)>0 in D where

Pf(z)=eiα(1+zf(z)f(z)).
The class Sα consists of functions f(z) for which zf(z) is spiral-like, which has been introduced and extensively studied by M.S. Robertson [24]. In the present paper, we obtain the sharp upper bound for the Fekete–Szegö functional |a3λa22| for the complex parameter λ when fSα.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.09.008
Allu Vasudevarao 1

1 Department of Mathematics, Indian Institute of Technology Khargpur, Kharagpur-721 302, West Bengal, India
@article{CRMATH_2016__354_11_1065_0,
     author = {Allu Vasudevarao},
     title = {Fekete{\textendash}Szeg\"o inequality for certain spiral-like functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1065--1070},
     publisher = {Elsevier},
     volume = {354},
     number = {11},
     year = {2016},
     doi = {10.1016/j.crma.2016.09.008},
     language = {en},
}
TY  - JOUR
AU  - Allu Vasudevarao
TI  - Fekete–Szegö inequality for certain spiral-like functions
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1065
EP  - 1070
VL  - 354
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2016.09.008
LA  - en
ID  - CRMATH_2016__354_11_1065_0
ER  - 
%0 Journal Article
%A Allu Vasudevarao
%T Fekete–Szegö inequality for certain spiral-like functions
%J Comptes Rendus. Mathématique
%D 2016
%P 1065-1070
%V 354
%N 11
%I Elsevier
%R 10.1016/j.crma.2016.09.008
%G en
%F CRMATH_2016__354_11_1065_0
Allu Vasudevarao. Fekete–Szegö inequality for certain spiral-like functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1065-1070. doi : 10.1016/j.crma.2016.09.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.008/

[1] H.R. Abdel-Gawad; D.K. Thomas The Fekete–Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., Volume 114 (1992) no. 2, pp. 345-349

[2] B. Bhowmik; S. Ponnusamy; K.-J. Wirths On the Fekete–Szegö problem for concave univalent functions, J. Math. Anal. Appl., Volume 373 (2011) no. 2, pp. 432-438

[3] P.N. Chichra Regular functions f(z) for which zf(z) is α-spiral, Proc. Amer. Math. Soc., Volume 49 (1975), pp. 151-160

[4] J.H. Choi; Y.C. Kim; T. Sugawa A general approach to the Fekete–Szegö problem, J. Math. Soc. Jpn., Volume 59 (2007) no. 3, pp. 707-727

[5] P.L. Duren Univalent Functions, Grundlehren Math. Wiss., vol. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983

[6] M. Fekete; G. Szegö Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933), pp. 85-89

[7] J.A. Jenkins A general coefficient theorem, Trans. Amer. Math. Soc., Volume 77 (1954), pp. 262-280

[8] J.A. Jenkins On certain coefficients of univalent functions, Analytic Functions, Princeton University Press, Princeton, NJ, USA, 1960

[9] F.R. Keogh; E.P. Merkes A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., Volume 20 (1969) no. 1, pp. 8-12

[10] Y.C. Kim; T. Sugawa Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. (2), Volume 49 (2006), pp. 131-143

[11] W. Koepf On the Fekete–Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., Volume 101 (1987), pp. 89-95

[12] W. Koepf On the Fekete–Szegö problem for close-to-convex functions II, Arch. Math., Volume 49 (1987), pp. 420-433

[13] R.J. Libera; M.R. Ziegler Regular functions f(z) for which zf(z) is α-spiral, Trans. Amer. Math. Soc., Volume 166 (1972), pp. 361-370

[14] M.-C. Liu On functions of bounded boundary rotation, Proc. Amer. Math. Soc., Volume 29 (1971) no. 2, pp. 345-348

[15] R.R. London Fekete–Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., Volume 117 (1993) no. 4, pp. 947-950

[16] W. Ma; D. Minda An internal geometric characterization of strongly star-like functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, Volume 45 (1991), pp. 89-97

[17] W. Ma; D. Minda A unified treatment of some special classes of univalent functions (Z. Li; F. Ren; L. Yang; S. Zhang, eds.), Proceedings of the Conference on Complex Analysis, International Press Inc., 1992, pp. 157-169

[18] W. Ma; D. Minda Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl., Volume 205 (1997), pp. 537-553

[19] Z. Nehari The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., Volume 55 (1949), pp. 545-551

[20] J.A. Pfaltzgraff Univalence of the integral of f(z)λ, Bull. Lond. Math. Soc., Volume 7 (1975), pp. 254-256

[21] A. Pfluger The Fekete–Szegö inequality by a variational method, Ann. Acad. Sci. Fenn., Ser. A 1 Math., Volume 10 (1985), pp. 447-454

[22] A. Pfluger The Fekete–Szegö inequality for complex parameters, Complex Var. Theory Appl., Volume 7 (1986), pp. 149-160

[23] S. Ponnusamy; A. Vasudevarao; H. Yanagihara Region of variability of univalent functions f(z) for which zf(z) is spiral-like, Houst. J. Math., Volume 34 (2008) no. 4, pp. 1037-1048

[24] M.S. Robertson Univalent functions f(z) for which zf(z) is spiral-like, Mich. Math. J., Volume 16 (1969), pp. 97-101

[25] V. Singh; P.N. Chichra Univalent functions f(z) for which zf(z) is α-spiral-like, Indian J. Pure Appl. Math., Volume 8 (1977), pp. 253-259

[26] L. Špaček Contribution à la théorie des fonctions univalentes, Čas. Pěst. Math. Fys., Volume 62 (1933), pp. 12-19

[27] A. Vasudevarao An arclength problem for some subclasses of univalent functions, J. Anal., Volume 22 (2014), pp. 145-149 (in Czech)

[28] A. Vasudevarao Fekete–Szego problem for certain subclasses of univalent functions, Bull. Korean Math. Soc., Volume 52 (2015) no. 6, pp. 1937-1943

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis

Paweł Zaprawa

C. R. Math (2020)


The Fekete–Szegö functional associated with k-th root transformation using quasi-subordination

Palpandy Gurusamy; Janusz Sokół; Srikandan Sivasubramanian

C. R. Math (2015)


Application of Chebyshev polynomials to classes of analytic functions

Jacek Dziok; Ravinder Krishna Raina; Janusz Sokół

C. R. Math (2015)