Let be a countably-connected domain. In Ω, consider closed differential forms of degree 1 with components in . Further, consider sequences of periods of such forms around holes in Ω, i.e. around bounded connected components of . For which domains Ω the collection of such a period sequences coincides with ? We give an answer in terms of metric properties of holes in Ω.
Soit un domaine infiniment connexe. Considérons des formes différentielles fermées dans Ω de degré 1 et à composantes dans . Considérons de plus les suites de périodes de formes telles autour de trous dans le domaine Ω, c'est-à-dire autour des composantes connexes bornées de . Quels sont les domaines Ω tels que l'ensemble de ces suites de periodes coïncide avec ? On obtient un critère en termes de propriétés métriques des trous dans Ω.
Accepted:
Published online:
Mikhail Dubashinskiy 1
@article{CRMATH_2016__354_11_1060_0, author = {Mikhail Dubashinskiy}, title = {Periods of {\protect\emph{L}\protect\textsuperscript{2}-forms} in an infinite-connected planar domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {1060--1064}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.09.007}, language = {en}, }
Mikhail Dubashinskiy. Periods of L2-forms in an infinite-connected planar domain. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1060-1064. doi : 10.1016/j.crma.2016.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.007/
[1] Differentials and extremal length on Riemann surfaces, Proc. Math. Acad. Sci. USA, Volume 46 (1960) no. 4, pp. 540-543
[2] Interpolation by periods in planar domain (submitted for publication in St. Petersburg Math. J.) | arXiv
[3] Extremal Length and Closed Extensions of Partial Differential Operators, Gjellerup, Copenhagen, 1960
[4] Treatise on the Shift Operator: Spectral Function Theory, Grundlehren Math. Wiss., 1986
[5] Space Mappings with Bounded Distortion, Transl. Math. Monogr., vol. 73, American Mathematical Society, Providence, RI, USA, 1989
[6] Equilibrium vector potentials in , Hokkaido Math. J., Volume 25 (1996) no. 1, pp. 1-53
Cited by Sources:
Comments - Policy