Comptes Rendus
Functional analysis/Numerical analysis
A converse to Fortin's Lemma in Banach spaces
Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1092-1095.

We establish the converse of Fortin's Lemma in Banach spaces. This result is useful to assert the existence of a Fortin operator once a discrete inf–sup condition has been proved. The proof uses a specific construction of a right-inverse of a surjective operator in Banach spaces. The key issue is the sharp determination of the stability constants.

On montre une réciproque au lemme de Fortin dans les espaces de Banach. Ce résultat est utile afin d'affirmer l'existence d'un opérateur de Fortin une fois qu'une condition inf–sup discrète a été prouvée. La preuve utilise une construction spécifique d'un inverse à droite d'un opérateur surjectif dans les espaces de Banach. Le point crucial est la détermination précise des constantes de stabilité.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.09.013

Alexandre Ern 1; Jean-Luc Guermond 2

1 Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France
2 Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA
@article{CRMATH_2016__354_11_1092_0,
     author = {Alexandre Ern and Jean-Luc Guermond},
     title = {A converse to {Fortin's} {Lemma} in {Banach} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1092--1095},
     publisher = {Elsevier},
     volume = {354},
     number = {11},
     year = {2016},
     doi = {10.1016/j.crma.2016.09.013},
     language = {en},
}
TY  - JOUR
AU  - Alexandre Ern
AU  - Jean-Luc Guermond
TI  - A converse to Fortin's Lemma in Banach spaces
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1092
EP  - 1095
VL  - 354
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2016.09.013
LA  - en
ID  - CRMATH_2016__354_11_1092_0
ER  - 
%0 Journal Article
%A Alexandre Ern
%A Jean-Luc Guermond
%T A converse to Fortin's Lemma in Banach spaces
%J Comptes Rendus. Mathématique
%D 2016
%P 1092-1095
%V 354
%N 11
%I Elsevier
%R 10.1016/j.crma.2016.09.013
%G en
%F CRMATH_2016__354_11_1092_0
Alexandre Ern; Jean-Luc Guermond. A converse to Fortin's Lemma in Banach spaces. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1092-1095. doi : 10.1016/j.crma.2016.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.013/

[1] D. Boffi; F. Brezzi; M. Fortin Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., vol. 44, Springer, Heidelberg, Germany, 2013

[2] H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011

[3] C. Carstensen; L. Demkowicz; J. Gopalakrishnan A posteriori error control for DPG methods, SIAM J. Numer. Anal., Volume 52 (2014) no. 3, pp. 1335-1353

[4] A. Ern; J.-L. Guermond Theory and Practice of Finite Elements, Appl. Math. Sci., vol. 159, Springer-Verlag, New York, 2004

[5] M. Fortin An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér., Volume 11 (1977), pp. 341-354

Cited by Sources:

Comments - Policy