[Unicité et propriété lagrangienne des solutions manquant d'intégrabilité de l'équation de continuité]
On étudie l'unicité des solutions au sens des distributions de l'équation de continuité avec des champs de vecteurs Sobolev et la propriété d'être une solution lagrangienne, c'est-à-dire une solution transportée par le flot de l'équation différentielle ordinaire associée au champ de vecteurs. On travaille dans un cadre où les solutions considérées manquent d'intégrabilité locale et où on ne peut pas appliquer la théorie classique de DiPerna–Lions d'unicité des solutions au sens des distributions et de la propriété d'être lagrangienne, parce que l'on n'a pas assez d'intégrabilité pour le commutateur. On introduit un principe général pour démontrer la propriété d'être une solution lagrangienne : notre technique se base sur une désintégration le long du flot unique et sur un lemme d'extension lipschitzienne directionnelle, qui nous permet de construire une vaste famille de fonctions tests pour la formulation lagrangienne au sens des distributions de l'équation de continuité.
We deal with the uniqueness of distributional solutions to the continuity equation with a Sobolev vector field and with the property of being a Lagrangian solution, i.e. transported by a flow of the associated ordinary differential equation. We work in a framework of lack of local integrability of the solution, in which the classical DiPerna–Lions theory of uniqueness and Lagrangianity of distributional solutions does not apply due to the insufficient integrability of the commutator. We introduce a general principle to prove that a solution is Lagrangian: we rely on a disintegration along the unique flow and on a new directional Lipschitz extension lemma, used to construct a large class of test functions in the Lagrangian distributional formulation of the continuity equation.
Accepté le :
Publié le :
Laura Caravenna 1 ; Gianluca Crippa 2
@article{CRMATH_2016__354_12_1168_0, author = {Laura Caravenna and Gianluca Crippa}, title = {Uniqueness and {Lagrangianity} for solutions with lack of integrability of the continuity equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1168--1173}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.009}, language = {en}, }
TY - JOUR AU - Laura Caravenna AU - Gianluca Crippa TI - Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation JO - Comptes Rendus. Mathématique PY - 2016 SP - 1168 EP - 1173 VL - 354 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2016.10.009 LA - en ID - CRMATH_2016__354_12_1168_0 ER -
%0 Journal Article %A Laura Caravenna %A Gianluca Crippa %T Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation %J Comptes Rendus. Mathématique %D 2016 %P 1168-1173 %V 354 %N 12 %I Elsevier %R 10.1016/j.crma.2016.10.009 %G en %F CRMATH_2016__354_12_1168_0
Laura Caravenna; Gianluca Crippa. Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1168-1173. doi : 10.1016/j.crma.2016.10.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.009/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227-260
[2] L. Caravenna, G. Crippa, work in progress.
[3] A disintegration of the Lebesgue measure on the faces of a convex function, J. Funct. Anal., Volume 258 (2010), pp. 3604-3661
[4] Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., Volume 616 (2008), pp. 15-46
[5] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547
- Non-uniqueness in law of transport-diffusion equation forced by random noise, Journal of Differential Equations, Volume 416 (2025), pp. 82-142 | DOI:10.1016/j.jde.2024.09.046 | Zbl:7957283
- Nonuniqueness of weak solutions for the transport equation at critical space regularity, Annals of PDE, Volume 7 (2021) no. 1, p. 45 (Id/No 2) | DOI:10.1007/s40818-020-00091-x | Zbl:1469.35001
- A directional Lipschitz extension lemma, with applications to uniqueness and Lagrangianity for the continuity equation, Communications in Partial Differential Equations, Volume 46 (2021) no. 8, pp. 1488-1520 | DOI:10.1080/03605302.2021.1883650 | Zbl:1477.35070
- Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts, Mathematische Annalen, Volume 380 (2021) no. 1-2, pp. 855-883 | DOI:10.1007/s00208-020-01988-5 | Zbl:1512.35019
- Convex integration solutions to the transport equation with full dimensional concentration, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 37 (2020) no. 5, pp. 1075-1108 | DOI:10.1016/j.anihpc.2020.03.002 | Zbl:1458.35363
- Non-renormalized solutions to the continuity equation, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 6, p. 30 (Id/No 208) | DOI:10.1007/s00526-019-1651-8 | Zbl:1428.35005
- On the one-dimensional continuity equation with a nearly incompressible vector field, Communications on Pure and Applied Analysis, Volume 18 (2019) no. 2, pp. 559-568 | DOI:10.3934/cpaa.2019028 | Zbl:1415.35085
- Regularization by noise in one-dimensional continuity equation, Potential Analysis, Volume 51 (2019) no. 1, pp. 23-35 | DOI:10.1007/s11118-018-9700-z | Zbl:1447.60119
- Non-uniqueness for the transport equation with Sobolev vector fields, Annals of PDE, Volume 4 (2018) no. 2, p. 38 (Id/No 18) | DOI:10.1007/s40818-018-0056-x | Zbl:1411.35066
Cité par 9 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier