[2-Sous-groupes de Sylow des -groupes résolubles]
Un groupe fini dont les caractères complexes non linéaires sont rationnels est appelé un -groupe. Nous étudions dans cette Note la structure d'un -groupe par le biais de ses 2-sous-groupes de Sylow.
A finite group whose irreducible complex non-linear characters are rational is called a -group. In this paper, we study the structure of a -group through its Sylow 2-subgroups.
Accepté le :
Publié le :
Meysam Norooz-Abadian 1 ; Hesamuddin Sharifi 1
@article{CRMATH_2017__355_1_20_0, author = {Meysam Norooz-Abadian and Hesamuddin Sharifi}, title = {Sylow 2-subgroups of solvable $ {\mathbb{Q}}_{1}$-groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {20--23}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.11.001}, language = {en}, }
Meysam Norooz-Abadian; Hesamuddin Sharifi. Sylow 2-subgroups of solvable $ {\mathbb{Q}}_{1}$-groups. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 20-23. doi : 10.1016/j.crma.2016.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.001/
[1] Groups whose non-linear irreducible characters are rational valued, Arch. Math. (Basel), Volume 94 (2010) no. 5, pp. 411-418
[2] Sylow 2-subgroups of solvable -groups, Extr. Math., Volume 22 (2007) no. 1, pp. 83-91
[3] On the orders of zeros of irreducible characters, J. Algebra, Volume 321 (2009), pp. 345-352
[4] Big primes and character values for solvable groups, J. Algebra, Volume 100 (1986), pp. 305-324
[5] Character Theory of Finite Groups, Academic Press, 1976
[6] Finite Group Theory, American Mathematical Society, 2008
[7] Sylow 2-subgroups of rational groups, Math. Z., Volume 272 (2012) no. 3–4, pp. 937-945
[8] Structure and Representations of -Group, Lecture Notes in Mathematics, vol. 1084, Springer-Verlag, 1984
[9] The vanishing-off subgroup, J. Algebra, Volume 321 (2009), pp. 1313-1325
[10] Frobenius -groups, Arch. Math. (Basel), Volume 105 (2015), pp. 509-517
[11] Normal p-complements and irreducible characters, J. Algebra, Volume 14 (1970), pp. 129-134
Cité par Sources :
Commentaires - Politique