[Un théorème de l'indice pour la caractéristique d'Euler d'intersection d'un cône infini]
Le but de cette note est d'établir un théorème de l'indice pour la caractéristique d'Euler d'intersection d'un cône. Dans un premier temps, on étudie les propriétés spectrales du laplacien de Witten et on établit une formule de McKean–Singer. On donne aussi une formule explicite pour la fonction zêta associée au laplacien de Witten. Dans une deuxième partie, on applique des techniques d'indice local au laplacien de Witten. On obtient une formule qui exprime la caractéristique d'Euler d'intersection du cône comme la somme de deux termes, l'un local, l'autre étant l'invariant de Cheeger.
The aim of this note is to establish an index formula for the intersection Euler characteristic of a cone. The main actor of these notes is the model Witten Laplacian on the infinite cone. First, we study its spectral properties and establish a McKean–Singer-type formula. We also give an explicit formula for the zeta function of the model Witten Laplacian. In a second step, we apply local index techniques to the model Witten Laplacian. By combining these two steps, we express the absolute and relative intersection Euler characteristic of the cone as a sum of two terms, a term which is local, and a second term which is the Cheeger invariant.
Accepté le :
Publié le :
Ursula Ludwig 1
@article{CRMATH_2017__355_1_94_0, author = {Ursula Ludwig}, title = {An index formula for the intersection {Euler} characteristic of an infinite cone}, journal = {Comptes Rendus. Math\'ematique}, pages = {94--98}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.11.003}, language = {en}, }
Ursula Ludwig. An index formula for the intersection Euler characteristic of an infinite cone. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 94-98. doi : 10.1016/j.crma.2016.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.003/
[1] Families index for manifolds with boundary, superconnections, and cones. I: Families of manifolds with boundary and Dirac operators, J. Funct. Anal., Volume 89 (1990) no. 2, pp. 313-363
[2] An Extension of a Theorem by Cheeger and Müller, Astérisque, vol. 205, Société mathématique de France, Paris, 1992 (with an appendix by François Laudenbach)
[3] Kähler–Hodge theory for conformal complex cones, Geom. Funct. Anal., Volume 3 (1993) no. 5, pp. 439-473
[4] The resolvent expansion for second order regular singular operators, J. Funct. Anal., Volume 73 (1987), pp. 369-429
[5] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657
[6] Intersection homology. II, Invent. Math., Volume 72 (1983), pp. 77-129
[7] Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, Teubner-Verlag, Germany, 1997
[8] A comparison theorem between two complexes on singular spaces, J. Reine Angew. Math. (2016) (in press) | DOI
[9] Superconnections, Thom classes, and equivariant differential forms, Topology, Volume 25 (1986), pp. 85-110
Cité par Sources :
Commentaires - Politique