Comptes Rendus
Mathematical analysis
On polynomial interpolation of bivariate harmonic polynomials
Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 28-33.

We use Kergin and Hakopian interpolants to give some bases for the dual space of bivariate harmonic polynomials.

Nous utilisons les interpolations de Kergin et d'Hakopian pour construire des bases du dual de l'espace des polynômes harmoniques à deux variables.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.11.008

Phung Van Manh 1

1 Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy street, Cau Giay, Hanoi, Viet Nam
@article{CRMATH_2017__355_1_28_0,
     author = {Phung Van Manh},
     title = {On polynomial interpolation of bivariate harmonic polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {28--33},
     publisher = {Elsevier},
     volume = {355},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crma.2016.11.008},
     language = {en},
}
TY  - JOUR
AU  - Phung Van Manh
TI  - On polynomial interpolation of bivariate harmonic polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 28
EP  - 33
VL  - 355
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2016.11.008
LA  - en
ID  - CRMATH_2017__355_1_28_0
ER  - 
%0 Journal Article
%A Phung Van Manh
%T On polynomial interpolation of bivariate harmonic polynomials
%J Comptes Rendus. Mathématique
%D 2017
%P 28-33
%V 355
%N 1
%I Elsevier
%R 10.1016/j.crma.2016.11.008
%G en
%F CRMATH_2017__355_1_28_0
Phung Van Manh. On polynomial interpolation of bivariate harmonic polynomials. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 28-33. doi : 10.1016/j.crma.2016.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.008/

[1] B. Bojanov; H. Hakopian; A. Sahakian Spline Functions and Multivariate Interpolations, Springer-Verlag, 1993

[2] L. Bos; J.-P. Calvi Kergin interpolant at the roots of unity approximate C2 functions, J. Anal. Math., Volume 72 (1997), pp. 203-221

[3] J.-P. Calvi; L. Filipsson The polynomial projectors that preserve homogeneous differential relations: a new characterization of Kergin interpolation, East J. Approx., Volume 10 (2004), pp. 441-454

[4] I. Georgieva; C. Hofreither Interpolation of harmonic functions bases on Radon projections, Numer. Math., Volume 127 (2014), pp. 423-445

[5] I. Georgieva; C. Hofreither New results on regularity and errors of harmonic interpolation using Radon projections, J. Comput. Appl. Math., Volume 29 (2016), pp. 73-81

[6] T.N.T. Goodman Interpolation in minimum seminorm and multivariate B-spline, J. Approx. Theory, Volume 37 (1983), pp. 212-223

[7] H.A. Hakopian Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type, J. Approx. Theory, Volume 34 (1982), pp. 286-305

[8] C.A. Micchelli A constructive approach to Kergin interpolation in Rk: multivariate B-spline and Lagrange interpolation, Rocky Mt. J. Math., Volume 10 (1980), pp. 485-497

[9] V.M. Phung On the convergence of Kergin and Hakopian interpolants at Leja sequences for the disk, Acta Math. Hung., Volume 136 (2012), pp. 165-188

Cited by Sources:

Comments - Policy