We establish the existence of an optimal control for a system driven by a coupled forward–backward stochastic differential equation (FBDSE) whose diffusion coefficient may degenerate (i.e. are not necessary uniformly elliptic). The cost functional is defined as the initial value of the backward component of the solution. We construct a sequence of approximating controlled systems, for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we get the existence of a feedback optimal control. Filippov's convexity condition is used to ensure that the optimal control is strict. The present result extends those obtained in [2,4] to controlled systems of coupled SDE–BSDE.
Nous établissons l'existence d'un contrôle optimal, pour un système modélisé par une équation différentielle stochastique progressive–rétrograde (EDSPR) couplée, dont le coefficient de diffusion peut dégénérer (i.e. est non nécessairement uniformément elliptique). Par une double régularisation, nous construisons une suite de contrôles optimaux markoviens. Nous passons ensuite à la limite pour établir l'existence d'un contrôle optimal markovien. L'hypothèse de convexité de Filippov est utilisée pour montrer que le contrôle optimal ainsi construit est strict. Le résultat étend en un sens ceux obtenus dans [2,4] aux systèmes d'EDS–EDSR couplés.
Accepted:
Published online:
Khaled Bahlali 1; Omar Kebiri 2; Ahmed Mtiraoui 1, 3
@article{CRMATH_2017__355_1_84_0, author = {Khaled Bahlali and Omar Kebiri and Ahmed Mtiraoui}, title = {Existence of an optimal control for a system driven by a degenerate coupled forward{\textendash}backward stochastic differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {84--89}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.11.012}, language = {en}, }
TY - JOUR AU - Khaled Bahlali AU - Omar Kebiri AU - Ahmed Mtiraoui TI - Existence of an optimal control for a system driven by a degenerate coupled forward–backward stochastic differential equations JO - Comptes Rendus. Mathématique PY - 2017 SP - 84 EP - 89 VL - 355 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2016.11.012 LA - en ID - CRMATH_2017__355_1_84_0 ER -
%0 Journal Article %A Khaled Bahlali %A Omar Kebiri %A Ahmed Mtiraoui %T Existence of an optimal control for a system driven by a degenerate coupled forward–backward stochastic differential equations %J Comptes Rendus. Mathématique %D 2017 %P 84-89 %V 355 %N 1 %I Elsevier %R 10.1016/j.crma.2016.11.012 %G en %F CRMATH_2017__355_1_84_0
Khaled Bahlali; Omar Kebiri; Ahmed Mtiraoui. Existence of an optimal control for a system driven by a degenerate coupled forward–backward stochastic differential equations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 84-89. doi : 10.1016/j.crma.2016.11.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.012/
[1] Backward–forward stochastic differential equations, Ann. Appl. Probab., Volume 3 (1993) no. 3, pp. 777-793
[2] Existence of optimal controls for systems driven by FBSDEs, Syst. Control Lett., Volume 60 (2011), pp. 344-349
[3] K. Bahlali, O. Kebiri, B. Mezerdi, A. Mtiraoui, Existence of an optimal control for a coupled FBSDE with a non-degenerate diffusion coefficient, preprint.
[4] Existence of an optimal control for stochastic control systems with nonlinear cost functional, Stochastics, Volume 82 (2010) no. 3, pp. 241-256
[5] On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stoch. Process. Appl., Volume 99 (2002), pp. 209-286
[6] Compactification methods in the control of degenerate diffusions: existence of an optimal control, Stochastics, Volume 20 (1987), pp. 169-219
[7] Nonlinear Elliptic and Parabolic Equations of Second Order, Reidel, Dordrecht, The Netherlands, 1987
[8] On weak uniqueness for some diffusions with discontinuous coefficients, Stoch. Process. Appl., Volume 113 (2004), pp. 37-64
[9] Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton–Jacobi–Bellman equations, SIAM J. Control Optim., Volume 52 (2014), pp. 1622-1662
[10] On wellposedness of forward–backward SDEs-a unified approach, Ann. Appl. Probab., Volume 25 (2015) no. 4, pp. 2168-2214
[11] Fully coupled forward–backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., Volume 37 (1999) no. 3, pp. 825-843
[12] Probabilistic interpretation for system of quasilinear parabolic PDE combined with algebria equations, Stoch. Process. Appl., Volume 124 (2014), pp. 3921-3947
[13] The wellposedness of FBSDEs, Discrete Contin. Dyn. Syst., Ser. B, Volume 6 (2006) no. 4, pp. 927-940 (electronic)
Cited by Sources:
☆ This work is partially supported by PHC Tassili 13MDU887.
Comments - Policy