A classical theorem of Forster asserts that a finite module M of rank ≤n over a Noetherian ring of Krull dimension d can be generated by elements. We prove a generalization of this result, with “module” replaced by “algebra”. Here we allow arbitrary finite algebras, not necessarily unital, commutative or associative. Forster's theorem can be recovered as a special case by viewing a module as an algebra where the product of any two elements is 0.
Un théorème classique de Forster affirme que tout module M de type fini et de rang ≤n sur un anneau noethérien de dimension de Krull d peut être engendré par éléments. Nous prouvons une généralisation de ce résultat où le mot « module » est remplacé par « algèbre ». Les algèbres considérées ici sont de type fini, mais non nécessairement unitaires, commutatives ou même associatives. Le théorème de Forster peut être déduit du cas particulier où un module est vu comme une algèbre dont le produit de deux éléments quelconques est 0.
Accepted:
Published online:
Uriya A. First 1; Zinovy Reichstein 1
@article{CRMATH_2017__355_1_5_0, author = {Uriya A. First and Zinovy Reichstein}, title = {On the number of generators of an algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--9}, publisher = {Elsevier}, volume = {355}, number = {1}, year = {2017}, doi = {10.1016/j.crma.2016.11.015}, language = {en}, }
Uriya A. First; Zinovy Reichstein. On the number of generators of an algebra. Comptes Rendus. Mathématique, Volume 355 (2017) no. 1, pp. 5-9. doi : 10.1016/j.crma.2016.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.015/
[1] Separable Algebras Over Commutative Rings, Lect. Notes Math., vol. 181, Springer-Verlag, 1971 (MR0280479)
[2] Generating modules efficiently: theorems from algebraic K-theory, J. Algebra, Volume 27 (1973), pp. 278-305 (MR0327742)
[3] Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring, Math. Z., Volume 84 (1964), pp. 80-87 (MR0163932)
[4] Central Simple Algebras and Galois Cohomology, Camb. Stud. Adv. Math., Volume 101 (2006) (MR2266528)
[5] The Book of Involutions, Colloq. Publ. – Amer. Math. Soc., vol. 44, 1998 (with a preface in French by J. Tits. MR1632779)
[6] On the number of generators of a projective module, Proc. Indian Acad. Sci. Math. Sci., Volume 123 (2013) no. 4, pp. 469-478 (MR3146601)
[7] Inner derivations of alternative algebras over commutative rings, Algebra Number Theory, Volume 2 (2008) no. 8, pp. 927-968 (MR2457357)
[8] A Taste of Jordan Algebras, Universitext, Springer, New York, 2004 (MR2014924)
[9] Albert algebras http://www.fernuni-hagen.de/petersson/download/alb-alg-ottawa-2012.pdf
[10] On automorphisms of matrix invariants, Trans. Amer. Math. Soc., Volume 340 (1993) no. 1, pp. 353-371 (MR1124173)
[11] An Introduction to Nonassociative Algebras, Dover, New York, 1995 (corrected reprint of the 1966 original. MR1375235)
[12] Galois Cohomology, Springer-Verlag, Berlin, 2002 (corrected reprint of the 1997 English edition. MR1867431)
[13] The number of generators of a module, Math. Z., Volume 102 (1967), pp. 318-322 (MR0218347)
[14] The number of generators of a module over a fully bounded ring, J. Algebra, Volume 66 (1980) no. 2, pp. 425-447 (MR0593603)
Cited by Sources:
Comments - Policy