Comptes Rendus
Algebraic geometry
The global monodromy property for K3 surfaces allowing a triple-point-free model
[La propriété de monodromie globale pour les surfaces K3 ayant un modèle sans point triple]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 200-204.

Inspirés par la conjecture de monodromie motivique, Halle et Nicaise ont défini la propriété de monodromie globale pour les variétés de Calabi–Yau définies sur un corps de valuation discrète. Dans cette note, nous étudions cette propriété pour les surfaces K3 ayant un modèle sans point triple. Le résultat principal est que la propriété de monodromie globale est satisfaite pour les surfaces K3 ayant une dégénérescence en pot de fleurs. Elle est également satisfaite pour les surfaces K3 ayant une dégénérescence en chaîne sous une condition supplémentaire.

Inspired by the motivic monodromy conjecture, Halle and Nicaise defined the global monodromy property for Calabi–Yau varieties over a discretely valued field. In this note, we discuss this property for K3 surfaces allowing a strict normal crossings model where no three components in the special fiber have a common intersection. The main result is that the global monodromy property holds for a K3 surface with a so-called flowerpot degeneration. It also holds for K3 surfaces with a chain degeneration under certain conditions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.12.002

Annelies Jaspers 1

1 KU Leuven, Departement of Mathematics, Section of Algebra, Celestijnenlaan 200B box 2400, B-3001 Leuven, Belgium
@article{CRMATH_2017__355_2_200_0,
     author = {Annelies Jaspers},
     title = {The global monodromy property for {\protect\emph{K}3} surfaces allowing a triple-point-free model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {200--204},
     publisher = {Elsevier},
     volume = {355},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crma.2016.12.002},
     language = {en},
}
TY  - JOUR
AU  - Annelies Jaspers
TI  - The global monodromy property for K3 surfaces allowing a triple-point-free model
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 200
EP  - 204
VL  - 355
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2016.12.002
LA  - en
ID  - CRMATH_2017__355_2_200_0
ER  - 
%0 Journal Article
%A Annelies Jaspers
%T The global monodromy property for K3 surfaces allowing a triple-point-free model
%J Comptes Rendus. Mathématique
%D 2017
%P 200-204
%V 355
%N 2
%I Elsevier
%R 10.1016/j.crma.2016.12.002
%G en
%F CRMATH_2017__355_2_200_0
Annelies Jaspers. The global monodromy property for K3 surfaces allowing a triple-point-free model. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 200-204. doi : 10.1016/j.crma.2016.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.002/

[1] E. Bultot; J. Nicaise Computing motivic zeta functions on log smooth models, 2016 | arXiv

[2] B. Crauder; D. Morrison Triple-point-free degenerations of surfaces with Kodaira number zero, The Birational Geometry of Degenerations, Prog. Math., vol. 29, Birkhäuser, Basel, Switzerland, 1983, pp. 353-386

[3] J. Denef; F. Loeser Geometry on arc spaces of algebraic varieties, Barcelona, Spain, 10–14 July 2000 (Prog. Math.), Volume vol. 201, Birkhäuser, Basel, Switzerland (2001), pp. 327-348

[4] L.H. Halle; J. Nicaise Motivic zeta functions of abelian varieties, and the monodromy conjecture, Adv. Math., Volume 227 (2011), pp. 610-653

[5] L.H. Halle; J. Nicaise Motivic zeta functions for degenerations of abelian varieties and Calabi–Yau varieties (A. Campillo et al., eds.), Recent Trends on Zeta Functions in Algebra and Geometry, Contemp. Math., vol. 566, American Mathematical Society, 2012, pp. 233-259

[6] L.H. Halle, J. Nicaise, Motivic zeta functions of degenerating Calabi–Yau varieties, in preparation.

[7] A. Jaspers The global monodromy property for K3 surfaces allowing a triple point free model, KU Leuven/University of Copenhagen, Belgium/Denmark, 2017 PhD thesis (in press)

[8] J. Nicaise An introduction to p-adic and motivic zeta functions and the monodromy conjecture (G. Bhowmik; K. Matsumoto; H. Tsumura, eds.), Algebraic and Analytic Aspects of Zeta Functions and L-Functions, MSJ Mem., vol. 21, Mathematical Society of Japan, 2010, pp. 115-140

[9] J. Nicaise; J. Sebag The motivic Serre invariant, ramification, and the analytic Milnor fiber, Invent. Math., Volume 168 (2007) no. 1, pp. 133-173

[10] J. Nicaise; J. Sebag The Grothendieck ring of varieties (R. Cluckers; J. Nicaise; J. Sebag, eds.), Motivic Integration and Its Interactions with Model Theory and Non-Archimedean Geometry, Lond. Math. Soc. Lect. Notes Ser., vol. 383, Cambridge University Press, Cambridge, UK, 2011, pp. 145-188

Cité par Sources :

Commentaires - Politique