We obtain a uniform bound for the effective Bogomolov conjecture, which depends only on the genus g of the curve. The bound grows as as g tends to infinity.
On obtient une borne uniforme de la conjecture effective de Bogomolov, qui ne dépend que du genre g de la courbe. Cette borne croît comme lorsque g tend vers l'infini.
Accepted:
Published online:
Xiao-Lei Liu 1; Sheng-Li Tan 2
@article{CRMATH_2017__355_2_205_0, author = {Xiao-Lei Liu and Sheng-Li Tan}, title = {Uniform bound for the effective {Bogomolov} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {205--210}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2017.01.003}, language = {en}, }
Xiao-Lei Liu; Sheng-Li Tan. Uniform bound for the effective Bogomolov conjecture. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 205-210. doi : 10.1016/j.crma.2017.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.003/
[1] Compact Complex Surfaces, Springer-Verlag, 1984
[2] On certain uniformity properties of curves over function fields, Compos. Math., Volume 130 (2002) no. 1, pp. 1-19
[3] Zhang's conjecture and the effective Bogomolov conjecture over function fields, Invent. Math., Volume 183 (2011) no. 3, pp. 517-562
[4] Admissible invariants of genus 3 curves, Manuscr. Math., Volume 148 (2015) no. 3, pp. 317-399
[5] Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. Éc. Norm. Supér., Volume 21 (1988), pp. 455-475
[6] The geometric Bogomolov conjecture for curves of small genus, Exp. Math., Volume 18 (2009) no. 3, pp. 347-367
[7] Inequalities between the Chern numbers of a singular fiber in a family of algebraic curves, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 3373-3396
[8] Pseudo-Periodic Maps and Degeneration of Riemann Surfaces, Lecture Notes in Mathematics, vol. 2030, Springer-Verlag, 2011
[9] Relative Bogomolov's inequality and the cone of positive divisors on the moduli space of stable curves, J. Amer. Math. Soc., Volume 11 (1998), pp. 569-600
[10] On the base changes of pencils of curves, II, Math. Z., Volume 222 (1996), pp. 655-676
[11] Chern numbers of a singular fiber, modular invariants and isotrivial families of curves, Acta Math. Vietnam., Volume 35 (2010) no. 1, pp. 159-172
[12] S.-L. Tan, Chern numbers of a differential equation, preprint.
[13] On the stable reduction of pencils of curves, Math. Z., Volume 203 (1990), pp. 379-389
[14] Admissible pairing on a curve, Invent. Math., Volume 112 (1993) no. 1, pp. 171-193
[15] Gross–Schoen cycles and dualising sheaves, Invent. Math., Volume 179 (2010) no. 1, pp. 1-73
Cited by Sources:
Comments - Policy