[Problèmes de Kashiwara–Vergne en genre supérieur et la bigèbre de Lie de Goldman–Turaev]
Nous définissons une famille de problèmes de Kashiwara–Vergne associés aux variétés compactes, connexes et orientées de dimension 2, de genre g avec composantes du bord. Le problème est un problème classique de la théorie de Lie. Nous montrons l'existence de solutions de pour tous g et n. Le point crucial est la résolution de , qui est basée sur les résultats de B. Enriquez sur les associateurs elliptiques. Notre construction est motivée par la question de formalité de la bigèbre de Lie de Goldman–Turaev . Nous montrons que chaque solution de induit un isomorphisme de bigèbres de Lie entre et sa graduée associée . Dans le cas où , un résultat similaire a été obtenu par G. Massuyeau en utilisant l'intégrale de Kontsevich. Dans le cas de , nos résultats impliquent que l'obstacle à la surjectivité de l'homomorphisme de Johnson définie par le co-crochet de Turaev est équivalent à l'obstacle de Enomoto–Satoh.
We define a family of Kashiwara–Vergne problems associated with compact connected oriented 2-manifolds of genus g with boundary components. The problem is the classical Kashiwara–Vergne problem from Lie theory. We show the existence of solutions to for arbitrary g and n. The key point is the solution to based on the results by B. Enriquez on elliptic associators. Our construction is motivated by applications to the formality problem for the Goldman–Turaev Lie bialgebra . In more detail, we show that every solution to induces a Lie bialgebra isomorphism between and its associated graded . For , a similar result was obtained by G. Massuyeau using the Kontsevich integral. For , , our results imply that the obstruction to surjectivity of the Johnson homomorphism provided by the Turaev cobracket is equivalent to the Enomoto–Satoh obstruction.
Accepté le :
Publié le :
Anton Alekseev 1 ; Nariya Kawazumi 2 ; Yusuke Kuno 3 ; Florian Naef 1
@article{CRMATH_2017__355_2_123_0, author = {Anton Alekseev and Nariya Kawazumi and Yusuke Kuno and Florian Naef}, title = {Higher genus {Kashiwara{\textendash}Vergne} problems and the {Goldman{\textendash}Turaev} {Lie} bialgebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--127}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.12.007}, language = {en}, }
TY - JOUR AU - Anton Alekseev AU - Nariya Kawazumi AU - Yusuke Kuno AU - Florian Naef TI - Higher genus Kashiwara–Vergne problems and the Goldman–Turaev Lie bialgebra JO - Comptes Rendus. Mathématique PY - 2017 SP - 123 EP - 127 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2016.12.007 LA - en ID - CRMATH_2017__355_2_123_0 ER -
%0 Journal Article %A Anton Alekseev %A Nariya Kawazumi %A Yusuke Kuno %A Florian Naef %T Higher genus Kashiwara–Vergne problems and the Goldman–Turaev Lie bialgebra %J Comptes Rendus. Mathématique %D 2017 %P 123-127 %V 355 %N 2 %I Elsevier %R 10.1016/j.crma.2016.12.007 %G en %F CRMATH_2017__355_2_123_0
Anton Alekseev; Nariya Kawazumi; Yusuke Kuno; Florian Naef. Higher genus Kashiwara–Vergne problems and the Goldman–Turaev Lie bialgebra. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 123-127. doi : 10.1016/j.crma.2016.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.007/
[1] The Kashiwara–Vergne conjecture and Drinfeld's associators, Ann. Math., Volume 175 (2012) no. 2, pp. 415-463
[2] New series in the Johnson cokernels of the mapping class groups of surfaces, Algebraic Geom. Topol., Volume 14 (2014), pp. 627-669
[3] Elliptic associators, Sel. Math., Volume 20 (2014), pp. 491-584
[4] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Volume 85 (1986), pp. 263-302
[5] The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math., Volume 47 (1978), pp. 249-271
[6] Intersections of curves on surfaces and their applications to mapping class groups, Ann. Inst. Fourier (Grenoble), Volume 65 (2015), pp. 2711-2762
[7] The Goldman–Turaev Lie bialgebra and the Johnson homomorphisms (A. Papadopoulos, ed.), Handbook of Teichmuller Theory, Volume V, EMS Publishing House, Zurich, Switzerland, 2016, pp. 97-165
[8] Formal descriptions of Turaev's loop operations (preprint) | arXiv
[9] Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not., Volume 2014 (2014) no. 1, pp. 1-64
[10] Poisson brackets in Kontsevich's “Lie World” (preprint) | arXiv
[11] L. Schneps, Talk at the conference “Homotopical Algebra, Operads and Grothendieck–Teichmüller Groups”, Nice, France, 9–12 September 2014.
[12] L. Schneps, E. Raphael, On linearised and elliptic versions of the Kashiwara–Vergne Lie algebra, in preparation.
[13] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 24 (1991), pp. 635-704
[14] Double Poisson algebras, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 5711-5799
[15] Configuration spaces of points and their rational homotopy theory, mini-course given in Les Diablerets (Switzerland) http://drorbn.net/dbnvp/LD16_Willwacher-1.php (on 31 August–1 September 2016. Video available at)
Cité par Sources :
Commentaires - Politique