We give a lower bound for class numbers of unimodular ternary Hermitian lattices over imaginary quadratic fields. This shows that class numbers of unimodular Hermitian lattices grow infinitely as the field discriminants grow.
Nous donnons une borne inférieure pour le nombre de classes de réseaux ternaires hermitiens unimodulaires sur corps quadratique imaginaire. Cela montre que le nombre de classes de réseaux unimodulaires hermitienne tend vers l'infini avec le discriminant du corps.
Accepted:
Published online:
Byeong Moon Kim 1; Poo-Sung Park 2
@article{CRMATH_2017__355_2_119_0, author = {Byeong Moon Kim and Poo-Sung Park}, title = {Growth of class numbers of positive definite ternary unimodular {Hermitian} lattices over imaginary number fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--122}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.12.008}, language = {en}, }
TY - JOUR AU - Byeong Moon Kim AU - Poo-Sung Park TI - Growth of class numbers of positive definite ternary unimodular Hermitian lattices over imaginary number fields JO - Comptes Rendus. Mathématique PY - 2017 SP - 119 EP - 122 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2016.12.008 LA - en ID - CRMATH_2017__355_2_119_0 ER -
%0 Journal Article %A Byeong Moon Kim %A Poo-Sung Park %T Growth of class numbers of positive definite ternary unimodular Hermitian lattices over imaginary number fields %J Comptes Rendus. Mathématique %D 2017 %P 119-122 %V 355 %N 2 %I Elsevier %R 10.1016/j.crma.2016.12.008 %G en %F CRMATH_2017__355_2_119_0
Byeong Moon Kim; Poo-Sung Park. Growth of class numbers of positive definite ternary unimodular Hermitian lattices over imaginary number fields. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 119-122. doi : 10.1016/j.crma.2016.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.008/
[1] Integral decomposition of Hermitian forms, Amer. J. Math., Volume 92 (1970), pp. 398-418
[2] Class numbers of positive definite binary and ternary unimodular Hermitian forms, Tohoku Math. J. (2), Volume 41 (1989) no. 2, pp. 171-216
[3] Representations of positive definite Hermitian forms with approximation and primitive properties, J. Number Theory, Volume 47 (1994) no. 2, pp. 175-189
[4] A note on Hermitian forms, Bull. Amer. Math. Soc., Volume 46 (1940), pp. 264-268
[5] Integral representation of Hermitian forms over local fields, J. Reine Angew. Math., Volume 229 (1968), pp. 57-80
[6] 2-Universal Hermitian lattices over imaginary quadratic fields, Ramanujan J., Volume 22 (2010) no. 2, pp. 139-151
[7] A finiteness theorem for representability of quadratic forms by forms, J. Reine Angew. Math., Volume 581 (2005), pp. 23-30
[8] Äquivalenz Hermitscher Formen über einen beliebigen algebraischen Zahlkörper, Abh. Math. Semin. Univ. Hamb., Volume 11 (1935), pp. 245-248
[9] Introduction to Quadratic Forms, Springer-Verlag, New York, 1973
[10] Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction nombre de diviseurs premiers de n, Acta Arith., Volume 42 (1983) no. 4, pp. 367-389
[11] Classification of Hermitian forms with the neighbour method, J. Symb. Comput., Volume 26 (1998) no. 4, pp. 487-508
[12] Arithmetic of unitary groups, Ann. Math. (2), Volume 79 (1964), pp. 369-409
Cited by Sources:
Comments - Policy