Soit G un groupe algébrique linéaire réductif connexe. Nous considérons les G-variétés normales avec orbites horosphériques. Dans cette courte note, nous donnons un critère pour déterminer si ces variétés ont au plus des singularités canoniques, log canoniques ou terminales dans le cas où elles admettent une courbe algébrique comme quotient rationnel. Ce résutat semble nouveau pour le cas spécial des actions de tores algébriques avec orbites générales de codimension 1. Pour la G-variété considérée X, notre critère est exprimé en terme d'une fonction de poids qui est construite à partir de l'ensemble des valuations G-invariantes du corps des fonctions . Dans le cas log terminal, la fonction génératrice de correspond au volume motivique des cordes de X. Comme application, nous traitons le cas des -surfaces normales.
Let G be a connected reductive linear algebraic group. We consider the normal G-varieties with horospherical orbits. In this short note, we provide a criterion to determine whether these varieties have at most canonical, log canonical or terminal singularities in the case where they admit an algebraic curve as rational quotient. This result seems to be new in the special setting of torus actions with general orbits of codimension 1. For the given G-variety X, our criterion is expressed in terms of a weight function that is constructed from the set of G-invariant valuations of the function field . In the log terminal case, the generating function of coincides with the stringy motivic volume of X. As an application, we discuss the case of normal -surfaces.
Accepté le :
Publié le :
Kevin Langlois 1
@article{CRMATH_2017__355_4_365_0, author = {Kevin Langlois}, title = {Singularit\'es canoniques et actions horosph\'eriques}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--369}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.004}, language = {fr}, }
Kevin Langlois. Singularités canoniques et actions horosphériques. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 365-369. doi : 10.1016/j.crma.2017.03.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.004/
[1] Polyhedral divisors and algebraic torus actions, Math. Ann., Volume 334 (2006), pp. 557-607
[2] Gluing affine torus actions via divisorial fans, Transform. Groups, Volume 13 (2008), pp. 215-242
[3] Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Kobe/Kyoto, 1997, World Sci. Publ., River Edge, NJ, USA (1998), pp. 1-32
[4] The arc space of horospherical varieties and motivic integration, Compos. Math., Volume 149 (2013) no. 8, pp. 1327-1352
[5] Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques, Tohoku Math. J. (2), Volume 47 (1995) no. 1, pp. 125-149
[6] Variétés sphériques et théorie de Mori, Duke Math. J., Volume 72 (1993) no. 2, pp. 369-404
[7] (Semin. Congr.), Volume vol. 6, Soc. Math. France, Paris (2002), pp. 155-186
[8] The geometry of toric varieties, Usp. Mat. Nauk, Volume 33 (1978) no. 2(200), pp. 85-134 (247)
[9] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232
[10] Normal affine surfaces with -actions, Osaka J. Math., Volume 40 (2003) no. 4, pp. 981-1009
[11] Introduction to Singularities, Springer, Tokyo, 2014
[12] Toroidal Embeddings. I, Lect. Notes Math., vol. 339, Springer-Verlag, Berlin–New York, 1973
[13] Weylgruppe und Momentabbildung, Invent. Math., Volume 99 (1990) no. 1, pp. 1-23
[14] The Luna-Vust theory of spherical embeddings, Hyderabad, 1989, Manoj Prakashan, Madras, India (1991), pp. 225-249
[15] On the geometry of normal horospherical G-varieties of complexity one, J. Lie Theory, Volume 26 (2016) no. 1, pp. 49-78
[16] Stringy invariants for horospherical varieties of complexity one | arXiv
[17] On the classification of normal G-varieties with spherical orbits | arXiv
[18] Normal singularities with torus actions, Tohoku Math. J. (2), Volume 65 (2013) no. 1, pp. 105-130
[19] Seattle lectures on motivic integration, Seattle 2005 (Proc. Symp. Pure Math.), Volume vol. 80 (Part 2), American Mathematical Society, Providence, RI, USA (2009), pp. 745-784
[20] Torus embeddings and applications, Based on Joint Work with Katsuya Miyake, Tata Inst. Fund. Res. Lect. Math. Phys., vol. 57, Tata Institute of Fundamental Research, Bombay, Springer-Verlag, Berlin–New York, 1978
[21] Variétés horosphériques de Fano, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 195-225
[22] Canonical 3-folds, Juillet 1979/Algebraic Geometry, Angers, France, 1979, Sijthoff and Noordhoff, Alphen aan den Rijn–Germantown, Md. (1980), pp. 273-310
[23] Decomposition of toric morphisms, Arithmetic and Geometry, Vol. II, Prog. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 395-418
[24] Séminaire sur les singularités des surfaces, Palaiseau, 1976–1977 (Lect. Notes Math.), Volume vol. 777 (1980)
[25] Classification of G-manifolds of complexity 1, Izv. Ross. Akad. Nauk Ser. Mat., Volume 61 (1997) no. 2, pp. 127-162 (Russian) translation in Izv. Math., 61, 2, 1997, pp. 363-397
[26] Arc spaces, motivic integration and stringy invariants, Singularity Theory and Its Applications, Adv. Stud. Pure Math., vol. 43, Math. Soc. Japan, Tokyo, 2006, pp. 529-572
Cité par Sources :
Commentaires - Politique