[Les solutions classiques d'un modèle de chimiotaxie avec consommation de chimioattracteurs sont bornées]
Dans cette Note, nous étudions le système de chimiotaxie suivant :
Nous montrons que les solutions classiques du système ci-dessus sont uniformément bornées en temps, pourvu que :
In this paper, we study the chemotaxis system:
We prove that the classical solutions to the above system are uniformly in-time-bounded provided that:
Accepté le :
Publié le :
Khadijeh Baghaei 1 ; Ali Khelghati 2
@article{CRMATH_2017__355_6_633_0, author = {Khadijeh Baghaei and Ali Khelghati}, title = {Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant}, journal = {Comptes Rendus. Math\'ematique}, pages = {633--639}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.04.009}, language = {en}, }
TY - JOUR AU - Khadijeh Baghaei AU - Ali Khelghati TI - Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant JO - Comptes Rendus. Mathématique PY - 2017 SP - 633 EP - 639 VL - 355 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2017.04.009 LA - en ID - CRMATH_2017__355_6_633_0 ER -
Khadijeh Baghaei; Ali Khelghati. Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 633-639. doi : 10.1016/j.crma.2017.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.009/
[1] Global existence and boundedness of classical solutions for a chemotaxismodel with consumption of chemoattractant and logistic source, Math. Methods Appl. Sci. (2016) | DOI
[2] Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177
[3] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415
[4] Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, 2016 (pp. 1–20) | arXiv
[5] Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 4, pp. 721-746
[6] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433
[7] Finite dimensional attractors for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 349-367
[8] Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011), pp. 521-529
[9] Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., Volume 252 (2012), pp. 2520-2543
[10] Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905
[11] Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767
[12] Boundedness in chemotaxis systems with rotational flux terms, Math. Nachr. (2016), pp. 1-12 | DOI
[13] Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant, J. Math. Phys., Volume 56 (2015) no. 8
[14] Global existence of solutions for a fully parabolic chemotaxis system with consumption of chemoattractant and logistic source, Math. Nachr., Volume 288 (2015), pp. 710-720
Cité par Sources :
Commentaires - Politique