[Spectre joint et principe de grandes déviations pour les produits de matrices aléatoires]
Le but de cette note est d'énoncer certains résultats sur les propriétés asymptotiques probabilistes et déterministes des groupes linéaires. Le premier est l'homologue, pour les normes des produits de matrices aléatoires, du théorème classique de Cramér sur le principe de grandes déviations des sommes des variables aléatoires iid. Dans le deuxième résultat, nous introduisons un ensemble limite décrivant la forme asymptotique des puissances d'une partie S d'un groupe de Lie linéaire semisimple (e.g., ). Cet ensemble limite trouve, parmi d'autres, une application dans l'étude des grandes déviations.
The aim of this note is to announce some results about the probabilistic and deterministic asymptotic properties of linear groups. The first one is the analogue, for norms of random matrix products, of the classical theorem of Cramér on large deviation principles (LDP) for sums of iid real random variables. In the second result, we introduce a limit set describing the asymptotic shape of the powers of a subset S of a semisimple linear Lie group G (e.g., ). This limit set has applications, among others, in the study of large deviations.
Accepté le :
Publié le :
Cagri Sert 1
@article{CRMATH_2017__355_6_718_0, author = {Cagri Sert}, title = {Joint spectrum and large deviation principle for random matrix products}, journal = {Comptes Rendus. Math\'ematique}, pages = {718--722}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.04.015}, language = {en}, }
Cagri Sert. Joint spectrum and large deviation principle for random matrix products. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 718-722. doi : 10.1016/j.crma.2017.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.015/
[1] Semigroups containing proximal linear maps, Isr. J. Math., Volume 91 (1995) no. 1–3, pp. 1-30
[2] Some Limit Theorems in Statistics, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1971
[3] Limit theorems for non-commutative operations, Duke Math. J., Volume 21 (1954) no. 3, pp. 491-500
[4] Actions propres sur les espaces homogènes réductifs, Ann. Math., Volume 2 (1996), pp. 315-347
[5] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47
[6] Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math., Volume 111 (1993) no. 1, pp. 285-308
[7] Random Walks on Reductive Groups, Springer International Publishing, 2016
[8] Central limit theorem for linear groups, Ann. Probab., Volume 44 (2016) no. 2, pp. 1308-1340
[9] Bounded semigroups of matrices, Linear Algebra Appl., Volume 166 (1992), pp. 21-27
[10] Products of Random Matrices with Applications to Schrödinger Operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston Inc., Boston, MA, USA, 1985
[11] Large Deviations Techniques and Applications, vol. 38, Springer Science & Business Media, 2009
[12] Non-commuting random products, Trans. Amer. Math. Soc., Volume 108 (1963) no. 3, pp. 377-428
[13] Products of random matrices, Ann. Math. Stat., Volume 31 (1960) no. 2, pp. 457-469
[14] Zariski closure and the dimension of the Gaussian law of the product of random matrices, I, Probab. Theory Relat. Fields, Volume 105 (1996) no. 1, pp. 109-142
[15] Lyapunov indices of a product of random matrices, Russ. Math. Surv., Volume 44 (1989), pp. 11-81
[16] On the spectrum of a large subgroup of a semisimple group, J. Mod. Dyn., Volume 2 (2008) no. 1
[17] Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Probab. Theory Relat. Fields, Volume 69 (1985) no. 2, pp. 187-242
[18] Théorèmes limites pour les produits de matrices aléatoires, Probability Measures on Groups, Springer, Berlin, Heidelberg, 1982, pp. 258-303
[19] -regular elements in Zariski dense subgroups, Q. J. Math., Volume 45 (1994) no. 4, pp. 542-545
[20] Joint Spectrum and Large Deviation Principle for Random Matrix Products, Université Paris-Sud, Orsay, France, 2016 (PhD thesis)
[21] Large deviation principle for random matrix products | arXiv
[22] C. Sert, Growth indicator on semisimple linear groups, in preparation.
[23] C. Sert, Joint spectrum in reductive groups, in preparation.
[24] C. Sert, Large deviation principle and growth indicator for Gromov hyperbolic groups, in preparation.
[25] A central limit theorem for products of random matrices and some of its applications, Symposia Mathematica, vol. 21, 1977, pp. 101-116
Cité par Sources :
Commentaires - Politique