Soient G un groupe de Lie réel, Λ un réseau de G, un sous-groupe semi-simple connexe sans facteur compact et Γ un sous-semigroupe Zariski dense de H. On montre que toute adhérence de Γ-orbite dans le quotient est homogène. Soit μ une probabilité sur H dont le support est compact et engendre un sous-semigroupe Zariski dense de H. On montre que toute probabilité μ-stationnaire μ-ergodique sur X est homogène.
Let G be a real Lie group, Λ be a lattice of G, H be a connected semisimple subgroup of G with no compact factor and Γ be a Zariski dense sub-semigroup of H. We prove that every Γ-orbit closure in the quotient space is homogeneous. Let μ be a probability measure on G whose support is compact and spans Γ. We prove that every μ-stationary μ-ergodic probability measure on X is Γ-invariant and homogeneous.
Accepté le :
Publié le :
Yves Benoist 1 ; Jean-François Quint 2
@article{CRMATH_2011__349_5-6_341_0, author = {Yves Benoist and Jean-Fran\c{c}ois Quint}, title = {Mesures stationnaires et ferm\'es invariants des espaces homog\`enes {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {341--345}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.015}, language = {fr}, }
Yves Benoist; Jean-François Quint. Mesures stationnaires et fermés invariants des espaces homogènes II. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 341-345. doi : 10.1016/j.crma.2011.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.015/
[1] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997), pp. 1-47
[2] Propriétés asymptotiques des groupes linéaires II, Adv. Stud. Pure Math., Volume 26 (2000), pp. 33-48
[3] Y. Benoist, J.-F. Quint, Random walks on finite volume homogeneous spaces, preprint, 21 pp.
[4] Y. Benoist, J.-F. Quint, Random walks on semisimple groups, en préparation.
[5] Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985
[6] Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Amer. Math. Soc., Volume 24 (2011), pp. 231-280
[7] Distributions diophantiennes et théorème limite local sur , Probab. Theory Related Fields, Volume 132 (2005), pp. 39-73
[8] Invariant measures and the set of exceptions to Littlewoodʼs conjecture, Ann. of Math., Volume 164 (2006), pp. 513-560
[9] Recurrence properties of random walks on finite volume homogeneous manifolds, Random Walks and Geometry, W. de Gruiter, 2004, pp. 431-444
[10] Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math., Volume 143 (1996), pp. 253-299
[11] Noncommuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428
[12] On the spectrum of a large subgroup of a semisimple group, J. Mod. Dyn., Volume 2 (2008), pp. 15-42
[13] Frontière de Furstenberg, propriété de contraction et théorèmes de convergence, Zeit. Wahrsch. Verw. Gebiete, Volume 69 (1985), pp. 187-242
[14] Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. Ecole Norm. Sup., Volume 40 (2007), pp. 209-249
[15] Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems, Volume 24 (2004), pp. 767-802
[16] Dynamical properties of group of automorphisms on Heisenberg nilmanifolds, Geom. Dedicata, Volume 145 (2010), pp. 89-101
[17] Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, Volume 16 (1996), pp. 751-778
[18] E. Le Page, Théorèmes limites pour les produits de matrices aléatoires, Lecture Notes in Math., vol. 928, 1982, pp. 258–303.
[19] Problems and conjectures in rigidity theory, Mathematics: Frontiers and Perspectives, Amer. Math. Soc., 2000, pp. 161-174
[20] Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math., Volume 116 (1994), pp. 347-392
[21] Markov Chain and Stochastic Stability, Springer, 1993
[22] Semigroup actions on , Geom. Dedicata, Volume 110 (2005), pp. 1-47
[23] Groupes de Schottky et comptage, Ann. Inst. Fourier (Grenoble), Volume 55 (2005), pp. 373-429
[24] Mesures stationnaires et fermés invariants des espaces homogènes, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 9-13
[25] On Raghunathanʼs measure conjecture, Ann. of Math., Volume 134 (1991), pp. 545-607
[26] Raghunathanʼs topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991), pp. 235-280
[27] Ragunathanʼs conjectures for Cartesian products of real and ℘-adic Lie groups, Duke Math. J., Volume 77 (1995), pp. 275-382
Cité par Sources :
Commentaires - Politique