[Entropie relative et entropie de Tsallis de deux opérateurs accrétifs]
Soient A et B deux opérateurs accrétifs. Nous introduisons d'abord une moyenne géométrique pondérée de A et de B et nous en étudions certaines propriétés. Nous définissons ensuite l'entropie relative ainsi que l'entropie de Tsallis de A et de B. Ces définitions et les résultats obtenus étendent ceux déjà énoncés dans la littérature pour les opérateurs inversibles positifs.
Let A and B be two accretive operators. We first introduce the weighted geometric mean of A and B together with some related properties. Afterwards, we define the relative entropy as well as the Tsallis entropy of A and B. The present definitions and their related results extend those already introduced in the literature for positive invertible operators.
Accepté le :
Publié le :
Mustapha Raïssouli 1, 2 ; Mohammad Sal Moslehian 3 ; Shigeru Furuichi 4
@article{CRMATH_2017__355_6_687_0, author = {Mustapha Ra{\"\i}ssouli and Mohammad Sal Moslehian and Shigeru Furuichi}, title = {Relative entropy and {Tsallis} entropy of two accretive operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {687--693}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.05.005}, language = {en}, }
TY - JOUR AU - Mustapha Raïssouli AU - Mohammad Sal Moslehian AU - Shigeru Furuichi TI - Relative entropy and Tsallis entropy of two accretive operators JO - Comptes Rendus. Mathématique PY - 2017 SP - 687 EP - 693 VL - 355 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2017.05.005 LA - en ID - CRMATH_2017__355_6_687_0 ER -
Mustapha Raïssouli; Mohammad Sal Moslehian; Shigeru Furuichi. Relative entropy and Tsallis entropy of two accretive operators. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 687-693. doi : 10.1016/j.crma.2017.05.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.005/
[1] Principal powers of matrices with positive definite real part, Linear Multilinear Algebra, Volume 63 (2015) no. 2, pp. 296-301
[2] Relative operator entropy in noncommutative information theory, Math. Jpn., Volume 34 (1989) no. 3, pp. 341-348
[3] Tsallis relative operator entropy with negative parameters, Adv. Oper. Theory, Volume 1 (2016) no. 2, pp. 219-235
[4] Inequalities for Tsallis relative entropy and generalized skew information, Linear Multilinear Algebra, Volume 59 (2011) no. 10, pp. 1143-1158
[5] Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl., Volume 381 (2004), pp. 219-235
[6] Refinements and reverses of means inequalities for Hilbert space operators, Banach J. Math. Anal., Volume 7 (2013) no. 2, pp. 15-29
[7] Improved arithmetic–geometric and Heinz means inequalities for Hilbert space operators, Publ. Math. (Debr.), Volume 80 (2012) no. 3–4, pp. 465-478
[8] Some inequalities for sector matrices, Oper. Matrices, Volume 10 (2016) no. 4, pp. 915-921
[9] A property of the geometric mean of accretive operator, Linear Multilinear Algebra, Volume 65 (2017) no. 3, pp. 433-437
[10] Matrices with positive definite Hermitian part: inequalities and linear systems, SIAM J. Matrix Anal. Appl., Volume 13 (1992) no. 2, pp. 640-654
[11] Operator entropy inequalities, Colloq. Math., Volume 2548 (2013) no. 2, pp. 159-168
[12] A new class of operator monotone functions via operator means, Linear Multilinear Algebra, Volume 64 (2016) no. 12, pp. 2463-2473
[13] Some inequalities involving quadratic forms of operator means and operator entropies, Linear Multilinear Algebra (2017) (in press)
Cité par Sources :
Commentaires - Politique