[Régularité globale des dynamiques d'alignement bidimensionnel à l'échelle hydrodynamique]
Nous étudions les systémes des équations d'Euler qui résultent de dynamiques d'alignement entre agents. Il a été prouvé que, pour des solutions régulières de tels systémes, en temps grand, le champ de vitesse s'approche d'une vitesse limite uniforme. Nous identifions des seuils critiques dans l'espace de phase de la configuration initiale qui caractérisent la régularité globale et donc le comportement en temps grand de tels systèmes bidimensionnels. Plus précisément, nous prouvons que, pour une classe assez large de conditions initiales sous-critiques telles que la divergence initiale n'est « pas trop négative » et l'écart spectral initial n'est « pas trop grand », la régularité globale reste vraie en temps grand.
We study the systems of Euler equations that arise from agent-based dynamics driven by velocity alignment. It is known that smooth solutions to such systems must flock, namely the large-time behavior of the velocity field approaches a limiting “flocking” velocity. To address the question of global regularity, we derive sharp critical thresholds in the phase space of initial configuration that characterizes the global regularity and hence the flocking behavior of such two-dimensional systems. Specifically, we prove for that a large class of sub-critical initial conditions such that the initial divergence is “not too negative” and the initial spectral gap is “not too large”, global regularity persists for all time.
Accepté le :
Publié le :
Siming He 1 ; Eitan Tadmor 1, 2
@article{CRMATH_2017__355_7_795_0, author = {Siming He and Eitan Tadmor}, title = {Global regularity of two-dimensional flocking hydrodynamics}, journal = {Comptes Rendus. Math\'ematique}, pages = {795--805}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.05.008}, language = {en}, }
Siming He; Eitan Tadmor. Global regularity of two-dimensional flocking hydrodynamics. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 795-805. doi : 10.1016/j.crma.2017.05.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.008/
[1] Contagion shocks in one dimension, J. Stat. Phys., Volume 158 (2015) no. 3, pp. 647-664
[2] A well-posedness theory in measures for kinetic models of collective motion, Math. Models Methods Appl. Sci., Volume 21 (2009), pp. 515-539
[3] A review on attractive-repulsive hydrodynamics for consensus in collective behavior (N. Bellomo; P. Degond; E. Tadmor, eds.), Active Particles, vol. 1. Advances in Theory, Models, and Applications, Birkhäuser, 2017
[4] Critical thresholds in 1D Euler equations with nonlocal forces, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 1, pp. 185-206
[5] Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal., Volume 42 (2010) no. 218, pp. 218-236
[6] Long time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations, SIAM J. Math. Anal., Volume 39 (2008) no. 5, pp. 1668-1685
[7] Emergent behavior in flocks, IEEE Trans. Autom. Control, Volume 52 (2007) no. 5, pp. 852-862
[8] Global regularity for the fractional Euler alignment system, 2017 | arXiv
[9] Critical thresholds in Euler–Poisson equations, Indiana Univ. Math. J., Volume 50 (2001), pp. 109-157
[10] Stable swarming using adaptive long-range interactions, 2017 | arXiv
[11] From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, Volume 1 (2008) no. 3, pp. 415-435
[12] Thresholds in three-dimensional restricted Euler–Poisson equations, Physica D, Volume 262 (2013), pp. 59-70
[13] Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., Volume 33 (2001), pp. 930-945
[14] Spectral dynamics of the velocity gradient field in restricted flows, Commun. Math. Phys., Volume 228 (2002), pp. 435-466
[15] Critical thresholds in 2D restricted Euler–Poisson equations, SIAM J. Appl. Math., Volume 63 (2003), pp. 1889-1910
[16] Rotation prevents finite-time breakdown, Physica D, Volume 188 (2004), pp. 262-276
[17] Compressible Euler equations with vacuum, J. Differ. Equ., Volume 140 (1997), pp. 223-237
[18] Blowing up solution of the Euler–Poisson equation for the evolution of gaseous stars, Transp. Theory Stat. Phys., Volume 21 (1992), pp. 615-624
[19] Obstacle and predator avoidance in a model for flocking, Physica D, Volume 239 (2010) no. 12, pp. 988-996
[20] A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., Volume 144 (2011) no. 5, pp. 923-947
[21] Heterophilious dynamics enhances consensus, SIAM Rev., Volume 56 (2014) no. 4, pp. 577-621
[22] Regularized Chapman–Enskog expansion for scalar conservation laws, Arch. Ration. Mech. Anal., Volume 119 (1992), pp. 95-107
[23] Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., Volume 101 (1985), pp. 475-485
[24] Eulerian dynamics with a commutator forcing, Trans. Math. Appl., Volume 1 (2017) no. 1, pp. 1-26
[25] Eulerian dynamics with a commutator forcing II: flocking, DCDS-A (2017) (in press)
[26] E. Tadmor, Vanishing viscosity and dual solutions of the two-dimensional pressureless equations, in preparation.
[27] Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A, Volume 372 (2014) no. 2028
[28] On the global regularity of sub-critical Euler–Poisson equations with pressure, J. Eur. Math. Soc., Volume 10 (2008), pp. 757-769
Cité par Sources :
Commentaires - Politique