[Sur l'existence de correcteurs en homogénéisation stochastique d'équations de Hamilton–Jacobi]
We prove, under some assumptions, the existence of correctors for the stochastic homogenization of “viscous” possibly degenerate Hamilton–Jacobi equations in stationary ergodic media. The general claim is that, assuming knowledge of homogenization in probability, correctors exist for all extreme points of the convex hull of the sublevel sets of the effective Hamiltonian. Even when homogenization is not a priori known, the arguments imply the existence of correctors and, hence, homogenization in some new settings. These include positively homogeneous Hamiltonians and, hence, geometric-type equations including motion by mean curvature, in radially symmetric environments and for all directions. Correctors also exist and, hence, homogenization holds for many directions for nonconvex Hamiltonians and general stationary ergodic media.
Nous démontrons l'existence, sous certaines conditions, de correcteurs en homogénéisation stochastique d'équations de Hamilton–Jacobi et d'équations de Hamilton–Jacobi visqueuses. L'énoncé général est que, si l'on sait qu'il y a homogénéisation en probabilité, un correcteur existe pour toute direction étant un point extrémal de l'enveloppe convexe d'un ensemble de niveau du Hamiltonien effectif. Même lorsque que l'homogénéisation n'est pas connue a priori, les arguments développés dans cette note montrent l'existence d'un correcteur, et donc l'homogénéisation, dans certains contextes. Cela inclut les équations de type géométrique dans des environnements dont la loi est à symmétrie radiale. Dans le cas général stationnaire ergodique et sans hypothèse de convexité sur le hamiltonien, on montre que des correcteurs existent pour plusieurs directions.
Accepté le :
Publié le :
Pierre Cardaliaguet 1 ; Panagiotis E. Souganidis 2
@article{CRMATH_2017__355_7_786_0, author = {Pierre Cardaliaguet and Panagiotis E. Souganidis}, title = {On the existence of correctors for the stochastic homogenization of viscous {Hamilton{\textendash}Jacobi} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {786--794}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.06.001}, language = {en}, }
TY - JOUR AU - Pierre Cardaliaguet AU - Panagiotis E. Souganidis TI - On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations JO - Comptes Rendus. Mathématique PY - 2017 SP - 786 EP - 794 VL - 355 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2017.06.001 LA - en ID - CRMATH_2017__355_7_786_0 ER -
%0 Journal Article %A Pierre Cardaliaguet %A Panagiotis E. Souganidis %T On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations %J Comptes Rendus. Mathématique %D 2017 %P 786-794 %V 355 %N 7 %I Elsevier %R 10.1016/j.crma.2017.06.001 %G en %F CRMATH_2017__355_7_786_0
Pierre Cardaliaguet; Panagiotis E. Souganidis. On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 786-794. doi : 10.1016/j.crma.2017.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.001/
[1] Stochastic homogenization of Hamilton–Jacobi and degenerate Bellman equations in unbounded environments, J. Math. Pures Appl., Volume 97 (2012), pp. 460-504
[2] Stochastic homogenization of level-set convex Hamilton–Jacobi equations, Int. Math. Res. Not., Volume 2013 (2013) no. 15, pp. 3420-3449
[3] Stochastic homogenization of quasilinear Hamilton–Jacobi equations and geometric motions, 2015 (arXiv preprint) | arXiv
[4] Stochastic homogenization of viscous Hamilton–Jacobi equations and applications, Anal. PDE, Volume 7 (2015) no. 8, pp. 1969-2007
[5] Stochastic homogenization of nonconvex Hamilton–Jacobi equations in one space dimension, J. Differ. Equ., Volume 261 (2016) no. 5, pp. 2702-2737
[6] User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67
[7] Busemann functions and infinite geodesics in two-dimensional first-passage percolation, Commun. Math. Phys., Volume 325 (2014) no. 3, pp. 917-963
[8] Exact and approximate correctors for stochastic Hamiltonians: the 1-dimensional case, Math. Ann., Volume 345 (2009) no. 4, pp. 749-782
[9] Homogenization and non-homogenization of certain non-convex Hamilton–Jacobi equations, 2016 (arXiv preprint) | arXiv
[10] Stochastic homogenization of Hamilton–Jacobi–Bellman equations, Commun. Pure Appl. Math., Volume 59 (2006) no. 10, pp. 1489-1521
[11] Geodesics in two-dimensional first-passage percolation, Ann. Probab., Volume 24 (1996) no. 1, pp. 399-410
[12] P.-L. Lions, G.C. Papanicolaou, S.R.S. Varadhan, Homogenization of Hamilton–Jacobi equations. Unpublished preprint, 1987.
[13] Correctors for the homogenization of Hamilton–Jacobi equations in the stationary ergodic setting, Commun. Pure Appl. Math., Volume 56 (2003) no. 10, pp. 1501-1524
[14] Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media, Commun. Partial Differ. Equ., Volume 30 (2005) no. 1–3, pp. 335-375
[15] Stochastic homogenization of Hamilton–Jacobi and “viscous” Hamilton–Jacobi equations with convex nonlinearities—revisited, Commun. Math. Sci., Volume 8 (2010) no. 2, pp. 627-637
[16] Homogenization for stochastic Hamilton–Jacobi equations, Arch. Ration. Mech. Anal., Volume 151 (2000) no. 4, pp. 277-309
[17] Stochastic homogenization of Hamilton–Jacobi equations and some applications, Asymptot. Anal., Volume 20 (1999) no. 1, pp. 1-11
[18] Stochastic homogenization of nonconvex Hamilton–Jacobi equations: a counterexample, Commun. Pure Appl. Math. (2017) (in press in press) | DOI
- Stochastic homogenization of quasiconvex degenerate viscous HJ equations in 1d, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 2, p. 41 (Id/No 38) | DOI:10.1007/s00526-024-02870-x | Zbl:1555.35021
- Homogenization of nonconvex viscous Hamilton-Jacobi equations in stationary ergodic media in one dimension, Nonlinearity, Volume 38 (2025) no. 7, p. 25 (Id/No 075017) | DOI:10.1088/1361-6544/adde27 | Zbl:8053659
- Stochastic homogenization of a class of quasiconvex and possibly degenerate viscous HJ equations in 1D, Journal of Convex Analysis, Volume 31 (2024) no. 2, pp. 477-496 | Zbl:1537.35035
- Beyond the Diffusion Equation and Miscellaneous Topics, Homogenization Theory for Multiscale Problems, Volume 21 (2023), p. 363 | DOI:10.1007/978-3-031-21833-0_6
- Asymptotic spreading for general heterogeneous Fisher-KPP type equations, Memoirs of the American Mathematical Society, 1381, Providence, RI: American Mathematical Society (AMS), 2022 | DOI:10.1090/memo/1381 | Zbl:1503.35002
- Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension, Journal of Differential Equations, Volume 333 (2022), pp. 231-267 | DOI:10.1016/j.jde.2022.06.011 | Zbl:1492.35025
- Homogenization of a stochastically forced Hamilton-Jacobi equation, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 38 (2021) no. 4, pp. 1217-1253 | DOI:10.1016/j.anihpc.2020.11.001 | Zbl:1465.60062
- Stochastic homogenization and effective Hamiltonians of Hamilton-Jacobi equations in one space dimension: the double-well case, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 3, p. 49 (Id/No 105) | DOI:10.1007/s00526-021-01961-3 | Zbl:1466.35019
- Stochastic homogenization of a class of quasiconvex viscous Hamilton-Jacobi equations in one space dimension, Journal of Differential Equations, Volume 300 (2021), pp. 660-691 | DOI:10.1016/j.jde.2021.08.004 | Zbl:1472.35033
- Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential, Communications in Partial Differential Equations, Volume 45 (2020) no. 1, pp. 32-56 | DOI:10.1080/03605302.2019.1657448 | Zbl:1437.35046
- Busemann functions and Gibbs measures in directed polymer models on
, The Annals of Probability, Volume 48 (2020) no. 2, pp. 778-816 | DOI:10.1214/19-aop1375 | Zbl:1444.60083 - Stochastic homogenization for reaction-diffusion equations, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, pp. 813-871 | DOI:10.1007/s00205-018-01334-9 | Zbl:1415.35025
- Stochastic homogenization of certain nonconvex Hamilton-Jacobi equations, Journal of Differential Equations, Volume 267 (2019) no. 5, pp. 2918-2949 | DOI:10.1016/j.jde.2019.03.036 | Zbl:1428.35028
Cité par 13 documents. Sources : Crossref, zbMATH
☆ P. Cardaliaguet was partially supported by the ANR (Agence nationale de la recherche) project ANR-12-BS01-0008-01. P. E. Souganidis was partially supported by the National Science Foundation Grants DMS-1266383 and DMS-1600129 and the Office of Naval Research Grant N000141712095.
Commentaires - Politique