Comptes Rendus
Partial differential equations
On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations
[Sur l'existence de correcteurs en homogénéisation stochastique d'équations de Hamilton–Jacobi]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 786-794.

We prove, under some assumptions, the existence of correctors for the stochastic homogenization of “viscous” possibly degenerate Hamilton–Jacobi equations in stationary ergodic media. The general claim is that, assuming knowledge of homogenization in probability, correctors exist for all extreme points of the convex hull of the sublevel sets of the effective Hamiltonian. Even when homogenization is not a priori known, the arguments imply the existence of correctors and, hence, homogenization in some new settings. These include positively homogeneous Hamiltonians and, hence, geometric-type equations including motion by mean curvature, in radially symmetric environments and for all directions. Correctors also exist and, hence, homogenization holds for many directions for nonconvex Hamiltonians and general stationary ergodic media.

Nous démontrons l'existence, sous certaines conditions, de correcteurs en homogénéisation stochastique d'équations de Hamilton–Jacobi et d'équations de Hamilton–Jacobi visqueuses. L'énoncé général est que, si l'on sait qu'il y a homogénéisation en probabilité, un correcteur existe pour toute direction étant un point extrémal de l'enveloppe convexe d'un ensemble de niveau du Hamiltonien effectif. Même lorsque que l'homogénéisation n'est pas connue a priori, les arguments développés dans cette note montrent l'existence d'un correcteur, et donc l'homogénéisation, dans certains contextes. Cela inclut les équations de type géométrique dans des environnements dont la loi est à symmétrie radiale. Dans le cas général stationnaire ergodique et sans hypothèse de convexité sur le hamiltonien, on montre que des correcteurs existent pour plusieurs directions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.06.001

Pierre Cardaliaguet 1 ; Panagiotis E. Souganidis 2

1 Ceremade, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France
2 Department of Mathematics, University of Chicago, Chicago, IL 60637, USA
@article{CRMATH_2017__355_7_786_0,
     author = {Pierre Cardaliaguet and Panagiotis E. Souganidis},
     title = {On the existence of correctors for the stochastic homogenization of viscous {Hamilton{\textendash}Jacobi} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {786--794},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.06.001},
     language = {en},
}
TY  - JOUR
AU  - Pierre Cardaliaguet
AU  - Panagiotis E. Souganidis
TI  - On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 786
EP  - 794
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.06.001
LA  - en
ID  - CRMATH_2017__355_7_786_0
ER  - 
%0 Journal Article
%A Pierre Cardaliaguet
%A Panagiotis E. Souganidis
%T On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations
%J Comptes Rendus. Mathématique
%D 2017
%P 786-794
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.06.001
%G en
%F CRMATH_2017__355_7_786_0
Pierre Cardaliaguet; Panagiotis E. Souganidis. On the existence of correctors for the stochastic homogenization of viscous Hamilton–Jacobi equations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 786-794. doi : 10.1016/j.crma.2017.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.001/

[1] S.N. Armstrong; P.E. Souganidis Stochastic homogenization of Hamilton–Jacobi and degenerate Bellman equations in unbounded environments, J. Math. Pures Appl., Volume 97 (2012), pp. 460-504

[2] S.N. Armstrong; P.E. Souganidis Stochastic homogenization of level-set convex Hamilton–Jacobi equations, Int. Math. Res. Not., Volume 2013 (2013) no. 15, pp. 3420-3449

[3] S.N. Armstrong; P. Cardaliaguet Stochastic homogenization of quasilinear Hamilton–Jacobi equations and geometric motions, 2015 (arXiv preprint) | arXiv

[4] S.N. Armstrong; H.V. Tran Stochastic homogenization of viscous Hamilton–Jacobi equations and applications, Anal. PDE, Volume 7 (2015) no. 8, pp. 1969-2007

[5] S.N. Armstrong; H.V. Tran; Y. Yu Stochastic homogenization of nonconvex Hamilton–Jacobi equations in one space dimension, J. Differ. Equ., Volume 261 (2016) no. 5, pp. 2702-2737

[6] M.G. Crandall; H. Ishii; P.-L. Lions User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67

[7] M. Damron; J. Hanson Busemann functions and infinite geodesics in two-dimensional first-passage percolation, Commun. Math. Phys., Volume 325 (2014) no. 3, pp. 917-963

[8] A. Davini; A. Siconolfi Exact and approximate correctors for stochastic Hamiltonians: the 1-dimensional case, Math. Ann., Volume 345 (2009) no. 4, pp. 749-782

[9] W.M. Feldman; P.E. Souganidis Homogenization and non-homogenization of certain non-convex Hamilton–Jacobi equations, 2016 (arXiv preprint) | arXiv

[10] E. Kosygina; F. Rezakhanlou; S.R.S. Varadhan Stochastic homogenization of Hamilton–Jacobi–Bellman equations, Commun. Pure Appl. Math., Volume 59 (2006) no. 10, pp. 1489-1521

[11] C. Licea; C.M. Newman Geodesics in two-dimensional first-passage percolation, Ann. Probab., Volume 24 (1996) no. 1, pp. 399-410

[12] P.-L. Lions, G.C. Papanicolaou, S.R.S. Varadhan, Homogenization of Hamilton–Jacobi equations. Unpublished preprint, 1987.

[13] P.-L. Lions; P.E. Souganidis Correctors for the homogenization of Hamilton–Jacobi equations in the stationary ergodic setting, Commun. Pure Appl. Math., Volume 56 (2003) no. 10, pp. 1501-1524

[14] P.-L. Lions; P.E. Souganidis Homogenization of “viscous” Hamilton–Jacobi equations in stationary ergodic media, Commun. Partial Differ. Equ., Volume 30 (2005) no. 1–3, pp. 335-375

[15] P.-L. Lions; P.E. Souganidis Stochastic homogenization of Hamilton–Jacobi and “viscous” Hamilton–Jacobi equations with convex nonlinearities—revisited, Commun. Math. Sci., Volume 8 (2010) no. 2, pp. 627-637

[16] F. Rezakhanlou; J.E. Tarver Homogenization for stochastic Hamilton–Jacobi equations, Arch. Ration. Mech. Anal., Volume 151 (2000) no. 4, pp. 277-309

[17] P.E. Souganidis Stochastic homogenization of Hamilton–Jacobi equations and some applications, Asymptot. Anal., Volume 20 (1999) no. 1, pp. 1-11

[18] B. Ziliotto Stochastic homogenization of nonconvex Hamilton–Jacobi equations: a counterexample, Commun. Pure Appl. Math. (2017) (in press in press) | DOI

  • Andrea Davini Stochastic homogenization of quasiconvex degenerate viscous HJ equations in 1d, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 2, p. 41 (Id/No 38) | DOI:10.1007/s00526-024-02870-x | Zbl:1555.35021
  • Elena Kosygina; Atilla Yilmaz Homogenization of nonconvex viscous Hamilton-Jacobi equations in stationary ergodic media in one dimension, Nonlinearity, Volume 38 (2025) no. 7, p. 25 (Id/No 075017) | DOI:10.1088/1361-6544/adde27 | Zbl:8053659
  • Andrea Davini Stochastic homogenization of a class of quasiconvex and possibly degenerate viscous HJ equations in 1D, Journal of Convex Analysis, Volume 31 (2024) no. 2, pp. 477-496 | Zbl:1537.35035
  • Xavier Blanc; Claude Le Bris Beyond the Diffusion Equation and Miscellaneous Topics, Homogenization Theory for Multiscale Problems, Volume 21 (2023), p. 363 | DOI:10.1007/978-3-031-21833-0_6
  • Henri Berestycki; Grégoire Nadin Asymptotic spreading for general heterogeneous Fisher-KPP type equations, Memoirs of the American Mathematical Society, 1381, Providence, RI: American Mathematical Society (AMS), 2022 | DOI:10.1090/memo/1381 | Zbl:1503.35002
  • Andrea Davini; Elena Kosygina Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension, Journal of Differential Equations, Volume 333 (2022), pp. 231-267 | DOI:10.1016/j.jde.2022.06.011 | Zbl:1492.35025
  • Benjamin Seeger Homogenization of a stochastically forced Hamilton-Jacobi equation, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 38 (2021) no. 4, pp. 1217-1253 | DOI:10.1016/j.anihpc.2020.11.001 | Zbl:1465.60062
  • Atilla Yilmaz Stochastic homogenization and effective Hamiltonians of Hamilton-Jacobi equations in one space dimension: the double-well case, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 3, p. 49 (Id/No 105) | DOI:10.1007/s00526-021-01961-3 | Zbl:1466.35019
  • Atilla Yilmaz Stochastic homogenization of a class of quasiconvex viscous Hamilton-Jacobi equations in one space dimension, Journal of Differential Equations, Volume 300 (2021), pp. 660-691 | DOI:10.1016/j.jde.2021.08.004 | Zbl:1472.35033
  • Elena Kosygina; Atilla Yilmaz; Ofer Zeitouni Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential, Communications in Partial Differential Equations, Volume 45 (2020) no. 1, pp. 32-56 | DOI:10.1080/03605302.2019.1657448 | Zbl:1437.35046
  • Christopher Janjigian; Firas Rassoul-Agha Busemann functions and Gibbs measures in directed polymer models on Z2, The Annals of Probability, Volume 48 (2020) no. 2, pp. 778-816 | DOI:10.1214/19-aop1375 | Zbl:1444.60083
  • Jessica Lin; Andrej Zlatoš Stochastic homogenization for reaction-diffusion equations, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 2, pp. 813-871 | DOI:10.1007/s00205-018-01334-9 | Zbl:1415.35025
  • Hongwei Gao Stochastic homogenization of certain nonconvex Hamilton-Jacobi equations, Journal of Differential Equations, Volume 267 (2019) no. 5, pp. 2918-2949 | DOI:10.1016/j.jde.2019.03.036 | Zbl:1428.35028

Cité par 13 documents. Sources : Crossref, zbMATH

P. Cardaliaguet was partially supported by the ANR (Agence nationale de la recherche) project ANR-12-BS01-0008-01. P. E. Souganidis was partially supported by the National Science Foundation Grants DMS-1266383 and DMS-1600129 and the Office of Naval Research Grant N000141712095.

Commentaires - Politique