Comptes Rendus
Ordinary differential equations
Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples
[Estimations de dispersion pour l'équation des ondes et de Schrödinger à l'extérieur des obstacles strictement convexes et contre-exemples]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 774-779.

L'objet de cette note est de démontrer des estimations de dispersion pour l'équation des ondes et de Schrödinger à l'extérieur d'un obstacle strictement convexe de Rd. Si d=3, on démontre que, pour chacune des deux équations, le flot linéaire vérifie les estimations de dispersion comme dans R3. En dimension plus grande d4, on démontre que des pertes dans la dispersion apparaissent à l'extérieur d'une boule de Rd et que cela arrive au point de Poisson.

The purpose of this note is to prove dispersive estimates for the wave and the Schrödinger equations outside strictly convex obstacles in Rd. If d=3, we show that, for both equations, the linear flow satisfies the (corresponding) dispersive estimates as in R3. In higher dimensions d4 and if the domain is the exterior of a ball in Rd, we show that losses in dispersion do appear and this happens at the Poisson spot.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.05.011

Oana Ivanovici 1 ; Gilles Lebeau 2

1 CNRS et Université Côte d'Azur, Laboratoire J.-A.-Dieudonné, UMR CNRS 7351, parc Valrose, 06108 Nice cedex 02, France
2 Université Côte d'Azur, Laboratoire J.-A.-Dieudonné, UMR CNRS 7351, parc Valrose, 06108 Nice cedex 02, France
@article{CRMATH_2017__355_7_774_0,
     author = {Oana Ivanovici and Gilles Lebeau},
     title = {Dispersion for the wave and the {Schr\"odinger} equations outside strictly convex obstacles and counterexamples},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {774--779},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.05.011},
     language = {en},
}
TY  - JOUR
AU  - Oana Ivanovici
AU  - Gilles Lebeau
TI  - Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 774
EP  - 779
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.05.011
LA  - en
ID  - CRMATH_2017__355_7_774_0
ER  - 
%0 Journal Article
%A Oana Ivanovici
%A Gilles Lebeau
%T Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples
%J Comptes Rendus. Mathématique
%D 2017
%P 774-779
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.05.011
%G en
%F CRMATH_2017__355_7_774_0
Oana Ivanovici; Gilles Lebeau. Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 774-779. doi : 10.1016/j.crma.2017.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.05.011/

[1] O. Ivanovici, G. Lebeau, Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, preprint, 2017.

[2] D. Li; H. Smith; X. Zhang Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, Math. Res. Lett., Volume 19 (2012) no. 1, pp. 213-232

  • Yan-long Fang; Alden Waters Dispersive estimates for Maxwell's equations in the exterior of a sphere, Journal of Differential Equations, Volume 415 (2025), p. 855 | DOI:10.1016/j.jde.2024.10.024
  • Felice Iandoli; Oana Ivanovici Dispersion for the wave equation outside a cylinder in R3, Journal of Functional Analysis, Volume 286 (2024) no. 9, p. 110377 | DOI:10.1016/j.jfa.2024.110377
  • Vladimir Georgiev; Mario Rastrelli High Frequency Weighted Resolvent Estimates for the Dirichlet Laplacian in the Exterior Domain, New Trends in the Applications of Differential Equations in Sciences, Volume 449 (2024), p. 107 | DOI:10.1007/978-3-031-53212-2_9
  • Oana Ivanovici; Richard Lascar; Gilles Lebeau; Fabrice Planchon Dispersion for the Wave Equation Inside Strictly Convex Domains II: The General Case, Annals of PDE, Volume 9 (2023) no. 2 | DOI:10.1007/s40818-023-00151-y
  • Cheng Bin Xu; Teng Fei Zhao; Ji Qiang Zheng Scattering for 3D Cubic Focusing NLS on the Domain Outside a Convex Obstacle Revisited, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 6, p. 1054 | DOI:10.1007/s10114-022-1058-x
  • Oana Ivanovici; Gilles Lebeau; Fabrice Planchon New counterexamples to Strichartz estimates for the wave equation on a 2D model convex domain, Journal de l’École polytechnique — Mathématiques, Volume 8 (2021), p. 1133 | DOI:10.5802/jep.168
  • Oana Ivanovici; Gilles Lebeau; Fabrice Planchon Strichartz estimates for the wave equation on a 2D model convex domain, Journal of Differential Equations, Volume 300 (2021), p. 830 | DOI:10.1016/j.jde.2021.08.011
  • Oana Ivanovici; Gilles Lebeau Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, p. 774 | DOI:10.1016/j.crma.2017.05.011

Cité par 8 documents. Sources : Crossref

The authors were partially supported by ERC project SCAPDE (grant 320845). The authors would like to thank Centro di Giorgi, Pisa for the warm welcome during the summer 2015 when this article has started.

Commentaires - Politique