We give a sufficient condition for complex manifolds for automorphism groups to become Lie groups. As an application, we see that the automorphism group of any strictly pseudoconvex domain or finite-type pseudoconvex domain has a Lie group structure.
Nous donnons une condition suffisante pour que le groupe des automorphismes d'une variété complexe possède une structure de groupe de Lie. Comme application, nous obtenons que le groupe des automorphismes de tout domaine strictement pseudo-convexe ou de type pseudo-convexe fini a une structure de groupe de Lie.
Accepted:
Published online:
Yoshikazu Nagata 1
@article{CRMATH_2017__355_7_769_0, author = {Yoshikazu Nagata}, title = {On the {Lie} group structure of automorphism groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {769--773}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.06.007}, language = {en}, }
Yoshikazu Nagata. On the Lie group structure of automorphism groups. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 769-773. doi : 10.1016/j.crma.2017.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.007/
[1] Mappings of partially analytic spaces, Amer. J. Math., Volume 83 (1961), pp. 209-242
[2] The Bergman metric on a Stein manifold with a bounded plurisubharmonic function, Trans. Amer. Math. Soc., Volume 354 (2002) no. 8, pp. 2997-3009
[3] On the dimension of the Bergman space for some unbounded domains, J. Geom. Anal., Volume 27 (2017) no. 2, pp. 1435-1444
[4] Infinite-dimensionality of the automorphism groups of homogeneous Stein manifolds, Math. Ann., Volume 344 (2009) no. 2, pp. 279-291
[5] Geometry of bounded domains, Trans. Amer. Math. Soc., Volume 92 (1959), pp. 267-290
[6] Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1995
[7] Holomorphically complete complex spaces, Amer. J. Math., Volume 82 (1961), pp. 917-934
[8] Several Complex Variables, The University of Chicago Press, 1971
[9] On complete Kähler domains with -boundary, Publ. Res. Inst. Math. Sci., Volume 16 (1980) no. 3, pp. 929-940
[10] -functions in unbounded balanced domains | arXiv
Cited by Sources:
Comments - Policy