Comptes Rendus
Geometry/Group theory
Conformal dimension on boundary of right-angled hyperbolic buildings
[Dimension conforme du bord d'un immeuble hyperbolique à angles droits]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 819-823.

Dans cette note, on utilise des modules combinatoires sur le bord d'un immeuble hyperbolique à angles droits pour encadrer sa dimension conforme. La borne inférieure obtenue est optimale dans le cas des immeubles fuchsiens.

In this note, we use some combinatorial modulus on the boundary of a right-angled hyperbolic building to control its conformal dimension. The lower bound obtained is optimal in the case of Fuchsian buildings.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.06.006

Antoine Clais 1

1 Technion, Department of Mathematics, 32000 Haifa, Israel
@article{CRMATH_2017__355_7_819_0,
     author = {Antoine Clais},
     title = {Conformal dimension on boundary of right-angled hyperbolic buildings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {819--823},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.06.006},
     language = {en},
}
TY  - JOUR
AU  - Antoine Clais
TI  - Conformal dimension on boundary of right-angled hyperbolic buildings
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 819
EP  - 823
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.06.006
LA  - en
ID  - CRMATH_2017__355_7_819_0
ER  - 
%0 Journal Article
%A Antoine Clais
%T Conformal dimension on boundary of right-angled hyperbolic buildings
%J Comptes Rendus. Mathématique
%D 2017
%P 819-823
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.06.006
%G en
%F CRMATH_2017__355_7_819_0
Antoine Clais. Conformal dimension on boundary of right-angled hyperbolic buildings. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 819-823. doi : 10.1016/j.crma.2017.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.006/

[1] M. Bonk; B. Kleiner Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246

[2] M. Bourdon Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal., Volume 7 (1997), pp. 245-268

[3] M. Bourdon; B. Kleiner Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn., Volume 7 (2013), pp. 39-107

[4] M. Carrasco Piaggio On the conformal gauge of a compact metric space, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013), pp. 495-548

[5] A. Clais Combinatorial modulus on boundary of Right–Angled hyperbolic buildings, Anal. Geom. Metr. Spaces, Volume 4 (2016) no. 1

[6] M. Davis The Geometry and Topology of Coxeter Groups, Princeton University Press, Princeton, NJ, USA, 2008

[7] M. Davis; J. Meier The topology at infinity of Coxeter groups and buildings, Comment. Math. Helv., Volume 77 (2002), pp. 746-766

[8] P. Haïssinsky Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner…], Astérisque, Volume 2007/2008 (2009)

[9] B. Kleiner The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, International Congress of Mathematicians. Vol. II, 2006, pp. 743-768

[10] J. Mackay; J. Tyson Conformal Dimension, American Mathematical Society, Providence, RI, USA, 2010

[11] J. Meier When is the graph product of hyperbolic groups hyperbolic?, Geom. Dedic., Volume 61 (1996), pp. 29-41

[12] P. Pansu Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn., Ser. A I Math., Volume 14 (1989), pp. 177-212

Cité par Sources :

Commentaires - Politique