[Dimension conforme du bord d'un immeuble hyperbolique à angles droits]
Dans cette note, on utilise des modules combinatoires sur le bord d'un immeuble hyperbolique à angles droits pour encadrer sa dimension conforme. La borne inférieure obtenue est optimale dans le cas des immeubles fuchsiens.
In this note, we use some combinatorial modulus on the boundary of a right-angled hyperbolic building to control its conformal dimension. The lower bound obtained is optimal in the case of Fuchsian buildings.
Accepté le :
Publié le :
Antoine Clais 1
@article{CRMATH_2017__355_7_819_0, author = {Antoine Clais}, title = {Conformal dimension on boundary of right-angled hyperbolic buildings}, journal = {Comptes Rendus. Math\'ematique}, pages = {819--823}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.06.006}, language = {en}, }
Antoine Clais. Conformal dimension on boundary of right-angled hyperbolic buildings. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 819-823. doi : 10.1016/j.crma.2017.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.006/
[1] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246
[2] Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal., Volume 7 (1997), pp. 245-268
[3] Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn., Volume 7 (2013), pp. 39-107
[4] On the conformal gauge of a compact metric space, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013), pp. 495-548
[5] Combinatorial modulus on boundary of Right–Angled hyperbolic buildings, Anal. Geom. Metr. Spaces, Volume 4 (2016) no. 1
[6] The Geometry and Topology of Coxeter Groups, Princeton University Press, Princeton, NJ, USA, 2008
[7] The topology at infinity of Coxeter groups and buildings, Comment. Math. Helv., Volume 77 (2002), pp. 746-766
[8] Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner…], Astérisque, Volume 2007/2008 (2009)
[9] The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, International Congress of Mathematicians. Vol. II, 2006, pp. 743-768
[10] Conformal Dimension, American Mathematical Society, Providence, RI, USA, 2010
[11] When is the graph product of hyperbolic groups hyperbolic?, Geom. Dedic., Volume 61 (1996), pp. 29-41
[12] Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn., Ser. A I Math., Volume 14 (1989), pp. 177-212
Cité par Sources :
Commentaires - Politique