The following fact seems to have been unnoticed until now:
Let F be a closed subset of the (finite-dimensional) connected manifold M. If is a proper continuous map which is the identity on the boundary ∂F of F in M, then either or .
The proof is elementary and simple using degree theory.
The statement has many deep consequences.
Le fait suivant ne semble pas être connu :
Soit F un sous-ensemble fermé de la variété connexe M (de dimension finie). Si est une application continue et propre qui est l'identité sur la frontière ∂F de F dans M, alors, on a, soit , soit .
La preuve, qui utilise la théorie du degré, est élémentaire et simple.
Ce fait a des conséquences profondes.
Accepted:
Published online:
Albert Fathi 1
@article{CRMATH_2017__355_9_1022_0, author = {Albert Fathi}, title = {On maps which are the identity on the boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {1022--1025}, publisher = {Elsevier}, volume = {355}, number = {9}, year = {2017}, doi = {10.1016/j.crma.2017.08.001}, language = {en}, }
Albert Fathi. On maps which are the identity on the boundary. Comptes Rendus. Mathématique, Volume 355 (2017) no. 9, pp. 1022-1025. doi : 10.1016/j.crma.2017.08.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.08.001/
[1] Theory of Retracts, Monografie Matematyczne, vol. 44, PWN – Państwowe Wydawnictwo Naukowe, Warsaw, 1967
[2] Newman's theorems on transformation groups, Topology, Volume 8 (1969), pp. 203-207
[3] Mapping Degree Theory, Graduate Studies in Mathematics, vol. 108, American Mathematical Society, Real Sociedad Matemática Española, Providence, RI, Madrid, 2009 (ISBN: 978-0-8218-4915-6)
Cited by Sources:
Comments - Policy