Comptes Rendus
Dynamical systems
Infinite entropy is generic in Hölder and Sobolev spaces
[Propriétés génériques pour des systèmes dynamiques de faible régularité]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1185-1189.

En 1980, Yano a montré que, sur une variété différentielle compacte, pour les endomorphismes en toutes dimensions et les homéomorphismes en dimension plus grande que un, l'entropie topologique est génériquement infinie. Il avait été auparavant montré que, pour les endomorphismes Lipschitz continus, l'entropie est toujours finie. Dans cette note, nous étudions ce qui se passe entre la régularité C0 et la continuité de type Lipschitz, en nous concentrant sur deux cas, endomorphismes et homéomorphismes de classes de Hölder et de Sobolev.

In 1980, Yano showed that on smooth compact manifolds, for endomorphisms in dimension one or above and homeomorphisms in dimensions greater than one, topological entropy is generically infinite. It had earlier been shown that, for Lipschitz endomorphisms on such spaces, topological entropy is always finite. In this article, we investigate what occurs between C0-regularity and Lipschitz regularity, focussing on two cases: Hölder mappings and Sobolev mappings.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.016

Edson de Faria 1 ; Peter Hazard 1 ; Charles Tresser 2

1 Instituto de Matemática e Estatística, USP, São Paulo, SP, Brazil
2 Aperio, MATAM Scientific Industrial Ctr., 9 A. Sakharov St., Haïfa, 3508409, Israel
@article{CRMATH_2017__355_11_1185_0,
     author = {Edson de Faria and Peter Hazard and Charles Tresser},
     title = {Infinite entropy is generic in {H\"older} and {Sobolev} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1185--1189},
     publisher = {Elsevier},
     volume = {355},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.016},
     language = {en},
}
TY  - JOUR
AU  - Edson de Faria
AU  - Peter Hazard
AU  - Charles Tresser
TI  - Infinite entropy is generic in Hölder and Sobolev spaces
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1185
EP  - 1189
VL  - 355
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2017.10.016
LA  - en
ID  - CRMATH_2017__355_11_1185_0
ER  - 
%0 Journal Article
%A Edson de Faria
%A Peter Hazard
%A Charles Tresser
%T Infinite entropy is generic in Hölder and Sobolev spaces
%J Comptes Rendus. Mathématique
%D 2017
%P 1185-1189
%V 355
%N 11
%I Elsevier
%R 10.1016/j.crma.2017.10.016
%G en
%F CRMATH_2017__355_11_1185_0
Edson de Faria; Peter Hazard; Charles Tresser. Infinite entropy is generic in Hölder and Sobolev spaces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1185-1189. doi : 10.1016/j.crma.2017.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.016/

[1] G. Alessandrini; M. Sigalotti Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two, Ann. Acad. Sci. Fenn., Math., Volume 26 (2001) no. 1, pp. 249-266

[2] E. de Faria; P. Hazard; C. Tresser Genericity of infinite entropy for maps with low regularity, 2017 (ArXiv preprint) | arXiv

[3] R.D. Edwards Solution of the 4-dimensional Annulus conjecture (after Frank Quinn), Contemp. Math., Volume 32 (1984), pp. 211-264

[4] E. Glasner; B. Weiss The topological Rohlin property and topological entropy, Amer. J. Math., Volume 128 (2001), pp. 1055-1070

[5] P. Hazard Maps in dimension one with infinite entropy, 2017 (ArXiv preprint) | arXiv

[6] A. Katok; B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54, Cambridge University Press, 1995

[7] K. Yano A remark on the topological entropy of homeomorphisms, Invent. Math., Volume 59 (1980), pp. 215-220

  • Jozef Bobok; Jernej Činč; Piotr Oprocha; Serge Troubetzkoy Continuous Lebesgue measure-preserving maps on one-dimensional manifolds: a survey, Topology and its Applications, Volume 364 (2025), p. 18 (Id/No 109101) | DOI:10.1016/j.topol.2024.109101 | Zbl:7996951
  • Eleonora Catsigeras; Serge Troubetzkoy Ergodic measures with infinite entropy, Fundamenta Mathematicae, Volume 266 (2024) no. 2, pp. 121-166 | DOI:10.4064/fm687-3-2024 | Zbl:7922319
  • Dinis Amaro; Mário Bessa; Helder Vilarinho Genericity of trivial Lyapunov spectrum for Lp-cocycles derived from second order linear homogeneous differential equations, Journal of Differential Equations, Volume 380 (2024), pp. 228-253 | DOI:10.1016/j.jde.2023.10.033 | Zbl:1535.37063
  • Edson De Faria; Peter Hazard; Charles Tresser Genericity of infinite entropy for maps with low regularity, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 22 (2021) no. 2, pp. 601-664 | DOI:10.2422/2036-2145.201807_004 | Zbl:1483.37028
  • Assis Azevedo; Davide Azevedo; Mário Bessa; Maria Joana Torres The closing lemma and the planar general density theorem for Sobolev maps, Proceedings of the American Mathematical Society, Volume 149 (2021) no. 4, pp. 1687-1696 | DOI:10.1090/proc/15352 | Zbl:1470.37069
  • Edson De Faria; Peter Hazard Generalized Whitney topologies are Baire, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 12, pp. 5441-5455 | DOI:10.1090/proc/15168 | Zbl:1468.46037
  • Assis Azevedo; Davide Azevedo; Mário Bessa; Maria Joana Torres Sobolev homeomorphisms are dense in volume preserving automorphisms, Journal of Functional Analysis, Volume 276 (2019) no. 10, pp. 3261-3274 | DOI:10.1016/j.jfa.2018.10.008 | Zbl:1423.46052
  • Edson de Faria; Peter Hazard; Charles Tresser On slow growth and entropy-type invariants, New trends in one-dimensional dynamics. Proceedings of the meeting on new trends in one-dimensional dynamics, IMPA, Rio de Janeiro, Brasil, November 14–17, 2016. In honour of Welington de Melo's 70th birthday, Cham: Springer, 2019, pp. 165-181 | DOI:10.1007/978-3-030-16833-9_9 | Zbl:1447.37022
  • Mário Bessa; César M. Silva; Helder Vilarinho Stretching generic Pesin's entropy formula, Journal of Statistical Physics, Volume 173 (2018) no. 5, pp. 1523-1546 | DOI:10.1007/s10955-018-2163-1 | Zbl:1403.37039

Cité par 9 documents. Sources : zbMATH

This work was partially supported by “Projeto Temático Dinâmica em Baixas Dimensões”, FAPESP Grant no. 2011/16265-2 and 2016/25053-8, FAPESP Grant no. 2015/17909-7, Projeto PVE CNPq 401020/2014-2 and CAPES Grant CSF-PVE-S - 88887.117899/2016-00.

Commentaires - Politique